Trả lời câu hỏi 57 - Mục câu hỏi trắc nghiệm trang 118 - Cánh diều

1. Nội dung câu hỏi

Cho hình chóp tứ giác đều \(S.ABCD\) có \(AB = a\), \(O\) là hình chiếu của \(S\) trên \(\left( {ABCD} \right)\), \(SO = a\). Gọi \(M\) là hình chiếu của \(O\) trên \(CD\) (xem hình dưới).

 

a) Đường thẳng \(AC\) vuông góc với mặt phẳng nào trong các mặt phẳng sau đây?

A. \(\left( {SAB} \right)\)

B. \(\left( {SAD} \right)\)

C. \(\left( {SBC} \right)\)

D. \(\left( {SBD} \right)\)

b) Số đo của góc nhị diện \(\left[ {A,SO,M} \right]\) bằng:

A. \({30^o}\)

B. \({45^o}\)

C. \({135^o}\)

D. \({150^o}\)

c) Khoảng cách giữa hai đường thẳng \(SO\) và \(BC\) bằng:

A. \(a\)

B. \(\frac{a}{2}\)

C. \(\frac{{a\sqrt 2 }}{2}\)

D. \(\frac{{a\sqrt 3 }}{2}\)

d) Thể tích của khối chóp \(S.ABCD\) bằng:

A. \({a^3}\)

B. \(\frac{{{a^3}}}{2}\)

C. \(\frac{{{a^3}}}{3}\)

D. \(3{a^3}\)

e) Khoảng cách từ \(C\) đến mặt phẳng \(\left( {SOM} \right)\) bằng:

A. \(a\)

B. \(\frac{a}{2}\)

C. \(\frac{{a\sqrt 2 }}{2}\)

D. \(\frac{{a\sqrt 3 }}{2}\)

g) Côtang của góc giữa đường thẳng \(SM\) và \(\left( {ABCD} \right)\) bằng:

A. \(\frac{1}{2}\)

B. \(2\)

C. \(1\)

D. \(\frac{{\sqrt 5 }}{5}\)


2. Phương pháp giải

a) Sử dụng kiến thức về đường thẳng vuông góc với mặt phẳng

b) Xác định góc phẳng nhị diện của góc nhị diện \(\left[ {A,SO,M} \right]\).

c) Xác định đường vuông góc chung của hai đường thẳng \(SO\) và \(BC\).

d) Công thức tính thể tích khối chóp: \(V = \frac{1}{3}Sh\), với \(S\) là diện tích đáy và \(h\) là chiều cao của khối chóp đó.

e) Chứng minh rằng \(M\) là hình chiếu của \(C\) trên \(\left( {SOM} \right)\), từ đó khoảng cách cần tính là đoạn thẳng \(CM\).

g) Xác định góc giữa đường thẳng \(SM\) và mặt phẳng \(\left( {ABCD} \right)\), rồi tính côtang của góc đó.

 

3. Lời giải chi tiết

a) Do \(S.ABCD\) là hình chóp tứ giác đều, ta suy ra \(ABCD\) là hình vuông. Điều này suy ra \(AC \bot BD\).

Hơn nữa, do \(SO \bot \left( {ABCD} \right)\) nên \(SO \bot AC\).

Như vậy, do \(AC \bot BD\), \(SO \bot AC\) nên \(AC \bot \left( {SBD} \right)\)

Đáp án đúng là D.

b) Do \(SO \bot \left( {ABCD} \right)\), ta suy ra \(SO \bot AO\) và \(SO \bot OM\). Do đó, góc \(\widehat {AOM}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,SO,M} \right]\).

Do \(M\) là trung điểm của \(CD\), và tam giác \(COD\) vuông cân tại \(O\), ta suy ra \(\widehat {MOD} = {45^o}\) và \(OM \bot CD\). Do đó \(\widehat {AOM} = \widehat {AOD} + \widehat {MOD} = {90^o} + {45^o} = {135^o}\).

Vậy số đo của góc nhị diện \(\left[ {A,SO,M} \right]\) là \({135^o}\).

Đáp án đúng là C.

c) Gọi \(N\) là trung điểm của \(BC\). Tam giác \(OBC\) vuông cân tại \(O\), nên ta có \(ON \bot BC\). Hơn nữa, do \(SO \bot \left( {ABCD} \right)\), nên \(SO \bot ON\).

Vậy \(ON\) là đường vuông góc chung của \(SO\) và \(BC\), do đó khoảng cách giữa hai đường thẳng \(SO\) và \(BC\) là đoạn thẳng \(ON\).

Dễ dàng chứng minh được \(ON = \frac{1}{2}AB = \frac{a}{2}\), vậy khoảng cách giữa hai đường thẳng chéo nhau \(SO\) và \(BC\) bằng \(\frac{a}{2}\).

Đáp án đúng là B.

d) Thể tích khối chóp \(S.ABCD\) là \(V = \frac{1}{3}Sh = \frac{1}{3}A{B^2}.SO = \frac{1}{3}{a^2}.a = \frac{{{a^3}}}{3}\).

Đáp án đúng là C.

e) Do \(SO \bot \left( {ABCD} \right)\), ta suy ra \(SO \bot CM\), mà theo câu b, ta suy ra \(CM \bot OM\).

Từ đó ta có \(CM \bot \left( {SOM} \right)\). Như vậy \(M\) là hình chiếu của \(C\) trên \(\left( {SOM} \right)\), từ đó khoảng cách từ \(C\) đến \(\left( {SOM} \right)\) là đoạn thẳng \(CM\). Do \(CM = \frac{1}{2}CD = \frac{a}{2}\), nên khoảng cách từ \(C\) đến \(\left( {SOM} \right)\) bằng \(\frac{a}{2}\).

Đáp án đúng là B.

g) Do \(O\) là hình chiếu của \(S\) trên \(\left( {ABCD} \right)\), ta suy ra góc giữa đường thẳng \(SM\) và mặt phẳng \(\left( {ABCD} \right)\) là góc \(\widehat {SMO}\).

Ta có \(\cot \widehat {SMO} = \frac{{OM}}{{SO}} = \frac{{\frac{a}{2}}}{a} = \frac{1}{2}\).

Vậy côtang của góc giữa đường thẳng \(SM\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \(\frac{1}{2}\).

Đáp án đúng là A.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved