Bài 1. Nhân đơn thức với đa thức
Bài 2. Nhân đa thức với đa thức
Bài 3, 4, 5. Những hằng đẳng thức đáng nhớ
Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
Bài 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
Bài 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Bài 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Bài 10. Chia đơn thức cho đơn thức
Bài 11. Chia đa thức cho đơn thức
Bài 12. Chia đa thức một biến đã sắp xếp
Bài tập ôn chương I. Phép nhân và phép chia các đa thức
Bài 1. Phân thức đại số
Bài 2. Tính chất cơ bản của phân thức
Bài 3. Rút gọn phân thức
Bài 4. Quy đồng mẫu thức nhiều phân thức
Bài 5. Phép cộng các phân thức đại số
Bài 6. Phép trừ các phân thức đại số
Bài 7. Phép nhân các phân thức đại số
Bài 8. Phép chia các phân thức đại số
Bài 9. Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức
Bài tập ôn chương II. Phân thức đại số
Phân tích các đa thức sau thành nhân tử:
LG a
\(\) \({x^3} - 3{x^2} - 4x + 12\)
Phương pháp giải:
Sử dụng phương pháp nhóm các hạng tử một cách thích hợp để xuất hiện nhân tử chung.
Lời giải chi tiết:
\(\) \({x^3} - 3{x^2} - 4x + 12\) \( = \left( {{x^3} - 3{x^2}} \right) - \left( {4x - 12} \right)\)
\( = {x^2}\left( {x - 3} \right) - 4\left( {x - 3} \right)\)
\( = \left( {x - 3} \right)\left( {{x^2} - 4} \right) \)
\(= \left( {x - 3} \right)\left( {x + 2} \right)\left( {x - 2} \right)\)
LG b
\(\) \({x^4} - 5{x^2} + 4\)
Phương pháp giải:
Sử dụng phương pháp tách một hạng tử thành nhiều hạng tử rồi nhóm các hạng tử một cách thích hợp để xuất hiện nhân tử chung
Lời giải chi tiết:
\(\) \({x^4} - 5{x^2} + 4\)
\( = {x^4} - 4{x^2} - {x^2} + 4 \)
\(= \left( {{x^4} - 4{x^2}} \right) - \left( {{x^2} - 4} \right)\)
\( = {x^2}\left( {{x^2} - 4} \right) - \left( {{x^2} - 4} \right) \)
\(= \left( {{x^2} - 4} \right)\left( {{x^2} - 1} \right)\)
\( = \left( {x + 2} \right)\left( {x - 2} \right)\left( {x + 1} \right)\left( {x - 1} \right)\)
LG c
\(\) \({\left( {x + y + z} \right)^3} - {x^3} - {y^3} - {z^3}\)
Phương pháp giải:
Sử dụng hằng đẳng thức: \( (A+B)^3=A^3+3A^2.B+3A.B^2+B^3\)
Lời giải chi tiết:
\(\) \({\left( {x + y + z} \right)^3} - {x^3} - {y^3} - {z^3}\)
\( = {\left[ {\left( {x + y} \right) + z} \right]^3} - {x^3} - {y^3} - {z^3}\)
\( = {\left( {x + y} \right)^3} + 3{\left( {x + y} \right)^2}z\)\( + 3\left( {x + y} \right){z^2} + {z^3} - {x^3} - {y^3} - {z^3}\)
\(= {x^3} + {y^3} + 3x^2y+3xy^2 + 3{\left( {x + y} \right)^2}z\)\(+ 3\left( {x + y} \right){z^2} - {x^3} - {y^3} \)
\(= {x^3} + {y^3} + 3xy\left( {x + y} \right) + 3{\left( {x + y} \right)^2}z\)\(+ 3\left( {x + y} \right){z^2} - {x^3} - {y^3} \)
\(= 3xy\left( {x + y} \right) + 3{\left( {x + y} \right)^2}z\)\(+ 3\left( {x + y} \right){z^2}\)
\(= 3\left( {x + y} \right)\left[ {xy + \left( {x + y} \right)z + {z^2}} \right] \)
\(= 3\left( {x + y} \right)\left[ {xy + xz + yz + {z^2}} \right] \)
\( = 3\left( {x + y} \right)\left[ {x\left( {y + z} \right) + z\left( {y + z} \right)} \right]\)
\( = 3\left( {x + y} \right)\left( {y + z} \right)\left( {x + z} \right) \)
SGK Toán 8 - Cánh Diều tập 1
Chủ đề 4. Nhịp điệu quê hương
Unit 3: Teenagers
Bài 2. Tôn trọng sự đa dạng của các dân tộc
Unit 1: My Friends - Bạn của tôi
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8