Đề bài
Tìm số trung bình, trung vị, mốt và tứ phân vị của mỗi mẫu số liệu sau đây:
a) Số điểm mà năm vận động viên bóng rổ ghi được trong một trận đấu:
9 8 15 8 20
b) Giá của một số loại giày (đơn vị nghìn đồng):
350 300 650 300 450 500 300 250
c) Số kênh được chiếu của một số hãng truyền hình cáp:
36 38 33 34 32 30 34 35
Phương pháp giải - Xem chi tiết
- Áp dụng công thức số trung bình của mẫu số liệu \({x_1},{x_2},...,{x_n}\):
\(\overline X = \dfrac{{{x_1} + {x_2} + ... + {x_n}}}{n}\)
- Số trung vị
+ Sắp xếp lại số liệu theo thứ tự không giảm.
+ Nếu số giá trị của mẫu số liệu là số lẻ thì giá trị chính giữa của mẫu là trung vị. Nếu là số chẵn thì trung vị là trung bình cộng của hai giá trị chính giữa của mẫu.
- Mốt: Giá trị xuất hiện với tần số lớn nhất.
- Tứ phân vị
+ Sắp xếp theo thứ tự không giảm.
+ Tìm trung vị. Giá trị này là \({Q_2}\)
+ Tìm trung vị của nửa số liệu bên trái \({Q_2}\), (không bao gồm \({Q_2}\), nếu n lẻ). Giá trị này là \({Q_1}\)
+ Tìm trung vị của nửa số liệu bên phải \({Q_2}\), (không bao gồm \({Q_2}\), nếu n lẻ). Giá trị này là \({Q_3}\)
Lời giải chi tiết
a) Số điểm mà năm vận động viên bóng rổ ghi được trong một trận đấu:
9 8 15 8 20
Số trung bình: \(\overline X = \dfrac{{9 + 8 + 15 + 8 + 20}}{5} = 12\)
Trung vị:
Sắp xếp theo thứ tự không giảm:
8 8 9 15 20
Ta có n=5 là số lẻ nên trung vị là 9.
Mốt: Ta thấy số 8 là số có tần số cao nhất (xuất hiện 2 lần)
Tứ phân vị:
+ Tìm \({Q_2}\)
Ta có trung vị là 9=> \({Q_2} = 9\).
+ Tìm \({Q_1}\)
Nửa số liệu bên trái là:
8 8
Trung vị của mẫu này là \(\dfrac{{8 + 8}}{2} = 8\)=>\({Q_1} = 8\)
+ Tìm \({Q_3}\)
Nửa số liệu bên phải là:
15 20
Trung vị của mẫu này là \(\dfrac{{15 + 20}}{2} = 17,5\)=>\({Q_3} = 17,5\)
Vậy số trung bình là 12, trung vị là 9 và mốt là 8, \({Q_1} = 8\), \({Q_3} = 17,5\)
b) Giá của một số loại giày (đơn vị nghìn đồng):
350 300 650 300 450 500 300 250
Số trung bình: \(\overline X ) \( = \dfrac{{350 + 300.3 + 650 + 450 + 500 + 250}}{8}\) \( = 387,5\)
Trung vị:
Sắp xếp theo thứ tự không giảm:
250 300 300 300 350 450 500 650
Ta có n=8 là số chẵn nên trung vị là trung bình cộng của hai số chính giữa.
Hai số chính giữa là 300 và 350
=> Trung vị là \(\dfrac{{300 + 350}}{2} = 325\)
Mốt: Ta thấy số 300 là số có tần số cao nhất (xuất hiện 3 lần)
Tứ phân vị:
+ Tìm \({Q_2}\)
Ta có trung vị là 325=> \({Q_2} = 325\).
+ Tìm \({Q_1}\)
Vì n chẵn nên nửa số liệu bên trái là:
250 300 300 300
Trung vị của mẫu này là \(\dfrac{{300 + 300}}{2} = 300\)=>\({Q_1} = 300\)
+ Tìm \({Q_3}\)
Vì n chẵn nên nửa số liệu bên phải là:
350 450 500 650
Trung vị của mẫu này là \(\dfrac{{450 + 500}}{2} = 475\)=>\({Q_3} = 475\)
Vậy số trung bình là 387,5, trung vị là 325 và mốt là 300, \({Q_1} = 300\), \({Q_3} = 475\)
c) Số kênh được chiếu của một số hãng truyền hình cáp:
36 38 33 34 32 30 34 35
Số trung bình: \(\overline X = \dfrac{{36 + 38 + 33 + 34.2 + 32 + 30 + 35}}{8} = 34\)
Trung vị:
Sắp xếp theo thứ tự không giảm:
30 32 33 34 34 35 36 38
Ta có n=8 là số chẵn nên trung vị là trung bình cộng của hai số chính giữa.
Hai số chính giữa là 34 và 34
=> Trung vị là 34
Mốt: Ta thấy số 34 là số có tần số cao nhất (xuất hiện 2 lần)
Tứ phân vị:
+ Tìm \({Q_2}\)
Ta có trung vị là 34=> \({Q_2} = 34\).
+ Tìm \({Q_1}\)
Vì n chẵn nên nửa số liệu bên trái là:
30 32 33 34
Trung vị của mẫu này là \(\dfrac{{32 + 33}}{2} = 32,5\)=>\({Q_1} = 32,5\)
+ Tìm \({Q_3}\)
Vì n chẵn nên nửa số liệu bên phải là:
34 35 36 38
Trung vị của mẫu này là \(\dfrac{{35 + 36}}{2} = 35,5\)=>\({Q_3} = 35,5\)
Vậy số trung bình là 34, trung vị là 34 và mốt là 34, \({Q_1} = 32,5\), \({Q_3} = 35,5\)
Chú ý
Nếu n chẵn thì nửa số liệu bên trái (phải) \({Q_2}\) phải chứa cả \({Q_2}\)
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Ngữ văn lớp 10
Chủ đề 1. Máy tính và xã hội tri thức
Unit 1. Family chores
Đề thi học kì 2
Chủ đề 6: Bảo vệ môi trường và cảnh quan thiên nhiên
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10