1. Nội dung câu hỏi
Cho tứ diện \(ABCD\). Gọi \(M\), \(N\) lần lượt là trung điểm của \(AB\), \(AD\); \(P\), \(Q\) lần lượt thuộc các cạnh \(CD\), \(BC\) (\(P\), \(Q\) không là trung điểm của \(CD\), \(BC\)). Chứng minh rằng nếu \(M\), \(N\), \(P\), \(Q\) cùng thuộc một mặt phẳng thì ba đường thẳng \(MQ\), \(NP\) và \(AC\) cùng đi qua một điểm.
2. Phương pháp giải
Gọi \(I\) là giao điểm của \(NP\) và \(AC\). Ta suy ra rằng \(I\) nằm trên giao tuyến của \(\left( {MNPQ} \right)\) và \(\left( {ABC} \right)\), từ đó suy ra \(I \in MQ\) và điều phải chứng minh.
3. Lời giải chi tiết
Xét \(\left( {ADC} \right)\), do \(P\) không là trung điểm của \(CD\), nên đường thẳng \(NP\) cắt đường thẳng \(AC\). Gọi \(I\) là giao điểm của \(NP\) và \(AC\).
Ta có \(I \in \left( {MNPQ} \right)\) (do \(I\) nằm trên \(NP\)) và \(I \in \left( {ABC} \right)\) (do \(I\) nằm trên \(AC\)). Như vậy \(I\) nằm trên giao tuyến của \(\left( {MNPQ} \right)\) và \(\left( {ABC} \right)\).
Ta nhận thấy rằng \(\left\{ \begin{array}{l}M \in \left( {MNPQ} \right)\\M \in AB \subset \left( {ABC} \right)\end{array} \right. \Rightarrow M \in \left( {MNPQ} \right) \cap \left( {ABC} \right)\), và
\(\left\{ \begin{array}{l}Q \in \left( {MNPQ} \right)\\Q \in BC \subset \left( {ABC} \right)\end{array} \right. \Rightarrow Q \in \left( {MNPQ} \right) \cap \left( {ABC} \right)\).
Do đó giao tuyến của \(\left( {MNPQ} \right)\) và \(\left( {ABC} \right)\) là đường thẳng \(MQ\).
Mà \(I\) nằm trên giao tuyến của \(\left( {MNPQ} \right)\) và \(\left( {ABC} \right)\), nên \(I \in MQ\).
Vậy \(MQ\), \(NP\) và \(AC\) cùng đi qua điểm \(I\).
Bài toán được chứng minh.
Unit 10: Travel
Chương 5: Dẫn xuất halogen - Ancohol - Phenol
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương III - Hóa học 11
SBT Ngữ văn 11 - Kết nối tri thức tập 2
CHƯƠNG 2. CẢM ỨNG
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11