Giải Bài 58 trang 86 sách bài tập toán 7 - Cánh diều

Đề bài

Cho tam giác ABC vuông tại A (AB < AC), BD là tia phân giác của góc ABC (D ∈ AC). Qua C kẻ tia Cx vuông góc với AC cắt BD tại M.

a) Chứng minh tam giác CBM là tam giác cân.

b) So sánh độ dài CM và AC.

 

 

Phương pháp giải - Xem chi tiết

- Chứng minh: \(\widehat M = \widehat {{B_2}}\) suy ra tam giác CBM cân tại C.

- Chứng minh: CM = BC và BC > AC suy ra CM > AC

 

 

Lời giải chi tiết

 

a) Vì ∆ABD vuông tại A nên \({\hat B_1} + {\hat D_1} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90o)

Mà \({\hat B_1} = {\hat B_2}\) (do BD là tia phân giác của góc ABC) và \({\hat D_1} = {\hat D_2}\) (hai góc đối đỉnh).

Nên \({\hat B_2} + {\hat D_2} = 90^\circ \)

Vì ∆CDM vuông tại C nên \(\hat M + {\hat D_2} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90o).

Suy ra \(\hat M = {\hat B_2}\)

Do đó tam giác CBM cân tại C.

Vậy tam giác CBM cân tại C.

b) Vì tam giác CBM cân tại C (chứng minh câu a)

Nên CM = BC.

Vì ∆ABC vuông tại A nên BC > AC (trong tam giác vuông, cạnh huyển là cạnh lớn nhất).

Suy ra CM > AC.

Vậy CM > AC.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved