1. Nội dung câu hỏi
Chứng minh các đẳng thức sau:
a) \({\sin ^2}{605^0} + {\sin ^2}{1645^0} + {\cot ^2}{25^0} = \frac{1}{{{{\cos }^2}{{65}^0}}}\);
b) \(\frac{{\sin {{530}^0}}}{{1 + \sin {{640}^0}}} = \frac{1}{{\sin {{10}^0}}} + \cot {10^0}\)
2. Phương pháp giải
Sử dụng kiến thức về giá trị lượng giác của các góc lượng giác có liên quan đặc biệt:
a) \(\sin \left( {{{360}^0} + \alpha } \right) = \sin \alpha \), \(\sin \left( { - \alpha } \right) = - \sin \alpha \), \(\sin \left( {{{180}^0} - \alpha } \right) = \sin \alpha \), \(\sin \left( {{{180}^0} + \alpha } \right) = - \sin \alpha \), \(\)\(\cot \left( {{{90}^0} - \alpha } \right) = \tan \alpha \)
b) \(\sin \left( {{{180}^0} - \alpha } \right) = \sin \alpha \), \(\sin \left( {{{360}^0} + \alpha } \right) = \sin \alpha \), \(\sin \left( {{{90}^0} - \alpha } \right) = \cos \alpha \)
3. Lời giải chi tiết
a) Ta có: \(\sin {605^0} \) \(= \sin \left( {{{2.360}^0} - {{115}^0}} \right) \) \(= \sin \left( { - {{115}^0}} \right) \) \(= - \sin \left( {{{180}^0} - {{65}^0}} \right) \) \(= - \sin {65^0}\)
\(\sin {1645^0} \) \(= \sin \left( {{{4.360}^0} + {{180}^0} + {{25}^0}} \right) \) \(= - \sin {25^0} \) \(= - \sin \left( {{{90}^0} - {{65}^0}} \right) \) \(= - \cos {65^0}\)
\(\cot {25^0} \) \(= \cot \left( {{{90}^0} - {{65}^0}} \right) \) \(= \tan {65^0}\)
Do đó, \({\sin ^2}{605^0} + {\sin ^2}{1645^0} + {\cot ^2}{25^0} \) \(= {\sin ^2}{65^0} + {\cos ^2}{65^0} + {\tan ^2}{65^0}\)
\( \) \(= 1 + {\tan ^2}{65^0} \) \(= \frac{1}{{{{\cos }^2}{{65}^0}}}\)
b) Ta có: \(\sin {530^0} \) \(= \sin \left( {{{3.180}^0} - {{10}^0}} \right) \) \(= \sin {10^0}\),
\(\sin {640^0} \) \(= \sin \left( {{{4.180}^0} - {{80}^0}} \right) \) \(= - \sin {80^0} \) \(= - \sin \left( {{{90}^0} - {{10}^0}} \right) \) \(= - \cos {10^0}\)
Do đó, \(\frac{{\sin {{530}^0}}}{{1 + \sin {{640}^0}}} \) \(= \frac{{\sin {{10}^0}}}{{1 - \cos {{10}^0}}} \) \(= \frac{{{{\sin }^2}{{10}^0}}}{{\sin {{10}^0}\left( {1 - \cos {{10}^0}} \right)}}\)
\( \) \(= \frac{{1 - {{\cos }^2}{{10}^0}}}{{\sin {{10}^0}\left( {1 - \cos {{10}^0}} \right)}} \) \(= \frac{{\left( {1 - \cos {{10}^0}} \right)\left( {1 + \cos {{10}^0}} \right)}}{{\sin {{10}^0}\left( {1 - \cos {{10}^0}} \right)}} \) \(= \frac{{1 + \cos {{10}^0}}}{{\sin {{10}^0}}} \) \(= \frac{1}{{\sin {{10}^0}}} + \cot {10^0}\).
Unit 9: Social issues
CHƯƠNG 4. SINH SẢN
Chương III. Điện trường
Tải 20 đề kiểm tra 15 phút - Chương 1
Chuyên đề 3. Mở đầu điện tử học
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11