Bài 6 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo

1. Nội dung câu hỏi

Cho hình thang ABCD có hai đáy là AB và CD với \(CD = \frac{1}{2}AB\). Gọi I là giao điểm của hai đường chéo AC và BD. Tìm phép vị tự biến \(\overrightarrow {AB} \) thành \(\overrightarrow {CD} \).

 

2. Phương pháp giải

Tìm tâm và tỉ số k của phép vị tự \(\overrightarrow {AB} \) thành \(\overrightarrow {CD} \).

 

3. Lời giải chi tiết

 

Vì ABCD là hình thang nên AB // CD

Ta có I là giao điểm của hai đường chéo AC và BD, áp dụng hệ quả định lí Thales, ta được \(\frac{{IC}}{{IA}} = \frac{{IB}}{{ID}} = \frac{{CD}}{{AB}} = \frac{1}{2}\)

Suy ra \(IC = \frac{1}{2}IA\)

Mà A, C nằm khác phía so với I.

Do đó \(\overrightarrow {IC}  =  - \frac{1}{2}\overrightarrow {IA} \)

Vì vậy \({V_{\left( {I, - \frac{1}{2}} \right)}}\left( A \right) = C\)

Chứng minh tương tự, ta được \({V_{\left( {I, - \frac{1}{2}} \right)}}\left( B \right) = D\)

Khi đó qua phép vị tự \({V_{\left( {I, - \frac{1}{2}} \right)}}\) biến \(\overrightarrow {AB} \) thành \(\overrightarrow {CD} \).

Vậy phép vị tự cần tìm là \({V_{\left( {I, - \frac{1}{2}} \right)}}\).

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved