Giải bài 6 trang 43 SBT toán 10 - Cánh diều

Đề bài

Cho bảng biến thiên hàm số \(y = f\left( x \right)\) như sau:

 

a) Tìm khoảng đồng biến, ngịch biến của hàm số \(y = f\left( x \right)\)

b) So sánh \(f\left( { - 2021} \right)\) và \(f\left( { - 1} \right)\); \(f\left( {\sqrt 3 } \right)\) và \(f\left( 2 \right)\)

Phương pháp giải - Xem chi tiết

Trên \(\left( {a;b} \right)\) , quan sát hướng mũi tên trong bảng biến thiên

+ Đồ thị hàm số đi lên từ trái qua phải thì hàm số \(f\left( x \right)\) đồng biến trên \(\left( {a;b} \right)\)

+ Đồ thị hàm số đi xuống từ trái qua phải thì hàm số \(f\left( x \right)\) nghịch biến trên \(\left( {a;b} \right)\)

Lời giải chi tiết

a) Quan sát bảng biến thiên ta thấy:

Đồ thị hàm số đi lên (từ trái qua phải) trên \(\left( {1;3} \right)\)

Đồ thị hàm số đi xuốn (từ trái qua phải) trên hai khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {3; + \infty } \right)\)

Do đó: Hàm số đồng biến trên khoảng  \(\left( {1;3} \right)\) và nghịch biến trên khoảng  \(\left( { - \infty ;1} \right) \cup \left( {3; + \infty } \right)\).

b)

+ Vì hàm số nghịch biến trên khoảng  \(\left( { - \infty ;1} \right)\) nên với \( - 2021 <  - 1\) ta có \(f\left( { - 2021} \right) > f\left( { - 1} \right)\)

+ Vì hàm số đồng biến trên khoảng  \(\left( {1;3} \right)\) nên với \(\sqrt 3  < 2\) ta có: \(f\left( {\sqrt 3 } \right) < f\left( 2 \right)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved