Đề bài
Cho góc x với \(\cos x = - \frac{1}{2}\). Tính giá trị của biểu thức \(S = 4{\sin ^2}x + 8{\tan ^2}x\)
Lời giải chi tiết
Ta có:
\(\begin{array}{l}\sin x = \sqrt {1 - {{\cos }^2}x} \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x\\ \Rightarrow {\sin ^2}x = 1 - {\left( { - \frac{1}{2}} \right)^2} = \frac{3}{4}\end{array}\)
\({\tan ^2}x = \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} = \frac{{\frac{3}{4}}}{{{{\left( { - \frac{1}{2}} \right)}^2}}} = 3\)
Thay vào S ta có:
\(S = 4{\sin ^2}x + 8{\tan ^2}x = 4.\frac{3}{4} + 8.3 = 27\)
Chủ đề 4: Chủ động, tự tin trong học tập và giao tiếp
Chuyên đề 3: Ba đường conic và ứng dụng
Chương 10: Địa lí các ngành kinh tế
Unit 6: Time to learn
D
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10