Bài 4. Biểu đồ hình quạt tròn
Bài 6. Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản
Hoạt động thực hành và trải nghiệm. Chủ đề 3: Dung tích phổi
Bài tập cuối chương V
Bài 1. Thu thập, phân loại và biểu diễn dữ liệu
Bài 2. Phân tích và xử lí dữ liệu
Bài 3. Biểu đồ đoạn thẳng
Bài 5. Biến cố trong một số trò chơi đơn giản
Bài 11. Tính chất ba đường phân giác của tam giác
Bài 12. Tính chất ba đường trung trực của tam giác
Bài 13. Tính chất ba đường cao của tam giác
Bài 1. Tổng các góc của một tam giác
Bài 2. Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác
Bài 3. Hai tam giác bằng nhau
Bài 6. Trường hợp bằng nhau thứ ba của tam giác: góc - cạnh - góc
Bài 4. Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh
Bài 10. Tính chất ba đường trung tuyến của tam giác
Bài 5. Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh
Bài 7. Tam giác cân
Bài 9. Đường trung trực của một đoạn thẳng
Bài 8. Đường vuông góc và đường xiên
Bài tập cuối chương VII
Đề bài
Cho \(\Delta ABC = \Delta MNP\). Tia phân giác của góc BAC và NMP lần lượt cắt các cạnh BC và NP tại D, Q. Chứng minh AD = MQ.
Phương pháp giải - Xem chi tiết
Chứng minh tam giác ABD bằng tam giác MNQ.
Lời giải chi tiết
Ta có: \(\Delta ABC = \Delta MNP\) nên theo tính chất 2 tam giác bằng nhau, ta có:
\(\begin{array}{l}\widehat A = \widehat M,\widehat B = \widehat N,\widehat C = \widehat P\\AB = MN,BC = NP,AC = NP.\end{array}\)
Mà AD và MQ lần lượt là phân giác của góc BAC và NMP nên \(\widehat {BAD} = \widehat {NMQ} = \dfrac{1}{2}\widehat {BAC} = \dfrac{1}{2}\widehat {NMP}\).
Xét hai tam giác ABD và MNQ có:
\(\widehat {BAD} = \widehat {NMQ}\);
AB = MN;
\(\widehat B = \widehat N\).
Vậy \(\Delta ABD = \Delta MNQ\) (g.c.g) nên AD = MQ ( 2 cạnh tương ứng)
Chủ đề 2. Tổ chức lưu trữ, tìm kiếm và trao đổi thông tin
HỌC KÌ 1
Chương 8. Cảm ứng ở sinh vật và tập tính ở động vật
Bài 8
Unit 7. Transportation
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7