Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Bài tập ôn chương III. Góc với đường tròn
Đề bài
Cho hai đường đường tròn \((O; R)\) và \((O’;R’)\) cắt nhau tại \(A, B.\) Hãy so sánh \(R\) và \(R’\) trong các trường hợp sau:
\(a)\) Số đo cung nhỏ \(AB\) của \((O; R)\) lớn hơn số đo cung nhỏ \(AB\) của \((O’; R’).\)
\(b)\) Số đo cung lớn \(AB\) của \((O; R)\) nhỏ hơn số đo cung lớn \(AB\) của \((O; R’).\)
\(c)\) Số đo hai cung nhỏ bằng nhau.
Phương pháp giải - Xem chi tiết
Ta sử dụng kiến thức:
+) Số đo của cung lớn bằng hiệu giữa \(360^o\) và số đo cung nhỏ(có chung hia mút với cung lớn).
+) Trong hai cung, cung nào có số đo lớn hơn được gọi là cung lớn hơn.
+) Trong một tam giác, cạnh đối diện với góc lớn hơn thì lớn hơn.
+) Hai cung được là bằng nhau nếu chúng có số đo bằng nhau.
+) Số đo của cung nhỏ bằng số đo góc ở tâm chắn cung đó.
Lời giải chi tiết
\(a)\) Trong \((O; R)\) ta có: \(\widehat {AOB}= sđ \overparen{AB}\) (nhỏ)
Trong \((O’; R)\) ta có: \(\widehat {AO'B} = sđ \overparen{AB}\) (nhỏ)
Vì số đo cung \(AB\) nhỏ của \((O; R)\) lớn hơn số đo cung \(AB\) nhỏ của \((O’; R’)\)
Suy ra: \(\widehat {AOB} > \widehat {AO'B}\) \((1)\)
Xét hai tam giác \(\Delta AOO'\) và \( \Delta BOO'\) có:
+) \(O'A=O'B=R'\)
+) \(OA=OB=R\)
+) \(OO'\) cạnh chung
Nên \(\Delta AOO' = \Delta BOO'\) \((c.c.c)\)
\( \Rightarrow \widehat {AOO'} = \widehat {BOO'} =\displaystyle {1 \over 2}\widehat {AOB}\) \((2)\)
\(\widehat {AO'O} = \widehat {BO'O} = \displaystyle {1 \over 2}\widehat {AO'B}\) \( (3)\)
Từ \((1),\) \((2)\) và \((3)\) suy ra: \(\widehat {AOO'} > \widehat {AO'O}\)
Trong \(\Delta AOO'\) ta có: \(\widehat {AOO'} > \widehat {AO'O}\)
Suy ra: \(O’A > OA\) (bất đẳng thức tam giác) hay \(R’ > R\)
Chú ý: Nếu các em vẽ hình như dưới đây thì ta lấy đối xứng đường tròn \((O)\) qua trục \(AB\) để chứng minh như trên.
\(b)\) Trong \((O; R)\) số đo cung lớn \(AB\) cộng với số đo cung nhỏ \(AB\) bằng \(360^o\)
Mà số đo cung lớn \(AB\) của \((O;R)\) nhỏ hơn số đo cung lớn \(AB\) của \((O’; R’)\)
Suy ra số đo cung nhỏ \(AB\) của \((O; R)\) lớn hơn số đo cung nhỏ của \((O’; R’)\)
Chứng minh tương tự câu \(a)\) ta có: \(R > R’.\)
\(c)\) Số đo hai cung nhỏ của \((O; R)\) và \((O’; R’)\) bằng nhau
\( \Rightarrow \widehat {AOB} = \widehat {AO'B}\)
Suy ra: \(\widehat {AOO'} = \widehat {AO'O} \Rightarrow \Delta AOO'\) cân tại \(A\) nên \(OA = OA’\) hay \(R = R’.\)
Đề thi vào 10 môn Toán Thanh Hóa
Đề cương ôn tập học kì 1 - Vật lí 9
Bài 24. Vùng Bắc Trung Bộ (tiếp theo)
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hóa học 9
Tải 30 đề ôn tập học kì 1 Toán 9