Giải bài 61 trang 105 SBT toán 10 - Cánh diều

Đề bài

Cho tam giác ABC đều cạnh a. Các điểm M, N lần lượt thuộc các tia BCCA thoả mãn \(BM = \frac{1}{3}BC,CN = \frac{5}{4}CA\). Tính:

a) \(\overrightarrow {AB} .\overrightarrow {AC} ,\overrightarrow {AM} .\overrightarrow {BN} \)

b) MN

Phương pháp giải - Xem chi tiết

Bước 1: Sử dụng định nghĩa tích vô hướng của 2 vectơ để tính \(\overrightarrow {AB} .\overrightarrow {AC} \)

Bước 2: Biến đổi \(\overrightarrow {AM} ,\overrightarrow {BN} \) thành các vectơ chung gốc (gốc C) rồi tính \(\overrightarrow {AM} .\overrightarrow {BN} \)

Bước 3: Sử dụng các quy tắc và định nghĩa tích vô hướng của hai vectơ để tính \(M{N^2} = {\left( {\overrightarrow {MN} } \right)^2} = {\left( {\overrightarrow {MB}  + \overrightarrow {BC}  + \overrightarrow {CN} } \right)^2}\)  rồi tính độ dài MN

Lời giải chi tiết

a) Ta có:

* \(\overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.\cos \widehat {BAC} = a.a.\cos {60^0} = \frac{{{a^2}}}{2}\)

* \(\overrightarrow {AM} .\overrightarrow {BN}  = \left( {\overrightarrow {CM}  - \overrightarrow {CA} } \right)\left( {\overrightarrow {CN}  - \overrightarrow {CB} } \right) = \overrightarrow {CM} .\overrightarrow {CN}  - \overrightarrow {CM} .\overrightarrow {CB}  - \overrightarrow {CA} .\overrightarrow {CN}  + \overrightarrow {CA} .\overrightarrow {CB} \)

Ta có: + \(\overrightarrow {CM} .\overrightarrow {CN}  = CM.CN.\cos \widehat {MCN} = \frac{{2a}}{3}.\frac{{5a}}{4}.\cos {60^0} = \frac{{5{a^2}}}{{12}}\)

           + \(\overrightarrow {CM} .\overrightarrow {CB}  = \frac{2}{3}\overrightarrow {CB} .\overrightarrow {CB}  = \frac{2}{3}B{C^2} = \frac{{2{a^2}}}{3}\)

           + \(\overrightarrow {CA} .\overrightarrow {CN}  = \overrightarrow {CA} .\frac{5}{4}\overrightarrow {CA}  = \frac{5}{4}A{C^2} = \frac{{5{a^2}}}{4}\)

           + \(\overrightarrow {CA} .\overrightarrow {CB}  = CA.CB.\cos \widehat {ACB} = a.a.\cos {60^0} = \frac{{{a^2}}}{2}\)

\( \Rightarrow \overrightarrow {AM} .\overrightarrow {BN}  = \overrightarrow {CM} .\overrightarrow {CN}  - \overrightarrow {CM} .\overrightarrow {CB}  - \overrightarrow {CA} .\overrightarrow {CN}  + \overrightarrow {CA} .\overrightarrow {CB}  = \frac{{5{a^2}}}{{12}} - \frac{{2{a^2}}}{3} - \frac{{5{a^2}}}{4} + \frac{{{a^2}}}{2} =  - {a^2}\)

Vậy \(\overrightarrow {AB} .\overrightarrow {AC}  = \frac{{{a^2}}}{2}\), \(\overrightarrow {AM} .\overrightarrow {BN}  =  - {a^2}\)

b) Ta có: \(M{N^2} = {\left( {\overrightarrow {MN} } \right)^2} = {\left( {\overrightarrow {MB}  + \overrightarrow {BC}  + \overrightarrow {CN} } \right)^2} = {\left( { - \frac{1}{3}\overrightarrow {BC}  + \overrightarrow {BC}  + \frac{5}{4}\overrightarrow {CA} } \right)^2}\) 

                      \( = {\left( {\frac{2}{3}\overrightarrow {BC}  + \frac{5}{4}\overrightarrow {CA} } \right)^2} = \frac{4}{9}B{C^2} + \frac{{25}}{{16}}A{C^2} + \frac{5}{3}\overrightarrow {BC} .\overrightarrow {CA} \)

                      \( = \frac{{289}}{{144}}{a^2} - \frac{5}{3}\overrightarrow {CB} .\overrightarrow {CA}  = \frac{{289}}{{144}}{a^2} - \frac{5}{3}.CB.CA.\cos \widehat {BCA}\) \( = \frac{{289}}{{144}}{a^2} - \frac{5}{6}{a^2} = \frac{{169{a^2}}}{{144}}\)

\( \Rightarrow M{N^2} = \frac{{169{a^2}}}{{144}} \Rightarrow MN = \frac{{13a}}{{12}}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved