SBT TOÁN TẬP 2 - KẾT NỐI TRI THỨC VỚI CUỘC SỐNG

Bài 6.14 trang 14 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Đề bài

Tìm parabol \(y = a{x^2} + bx + 2\), biết rằng parabol đó

a) Đi qua hai điểm \(M(1;5)\) và \(N( - 2;8)\)

b) Đi qua điểm \(A(3; - 4)\) và có trục đối xứng \(x =  - \frac{3}{2}\)

c) Có đỉnh \(I(2; - 2)\)

Phương pháp giải - Xem chi tiết

Bước 1: Nếu biết tọa độ điểm thuộc đồ thị (kể cả đỉnh) thay tọa độ các điểm vào hàm số

Bước 2: Nếu biết PT trục đối xứng x = c hay hoành độ đỉnh parabol ta được \( - \frac{b}{{2a}} = c\).

Bước 3: Giải các PT để tìm hai giá trị a, b tương ứng

Lời giải chi tiết

a) Thay tọa độ điểm \(M(1;5)\) và \(N( - 2;8)\) vào hàm số ta có hệ PT:

\(\left\{ \begin{array}{l}5 = a + b + 2\\8 = 4a - 2b + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b = 3\\4a - 2b = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 1\end{array} \right.\)

Vậy hàm số có dạng \(y = 2{x^2} + x + 2\)

b) Thay tọa độ điểm \(A(3; - 4)\) ta có PT: \(9a + 3b + 2 =  - 4 \Leftrightarrow 3a + b =  - 2\)

Parabol có trục đối xứng \(x =  - \frac{3}{2}\) \( \Rightarrow \) \( - \frac{b}{{2a}} =  - \frac{3}{2} \Leftrightarrow 3a - b = 0\)

Khi đó ta có hệ PT: \(\left\{ \begin{array}{l}3a + b =  - 2\\3a - b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - \frac{1}{3}\\b =  - 1\end{array} \right.\)

Vậy hàm số có dạng \(y =  - \frac{1}{3}{x^2} - x + 2\)

c) Parabol có đỉnh \(I(2; - 2)\) \( \Rightarrow  - \frac{b}{{2a}} = 2 \Leftrightarrow 4a + b = 0\)

Thay tọa độ đỉnh \(I(2; - 2)\) vào hàm số ta có PT: \(4a + 2b + 2 =  - 2 \Leftrightarrow 2a + b =  - 2\)

Khi đó ta có hệ PT: \(\left\{ \begin{array}{l}4a + b = 0\\2a + b =  - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b =  - 4\end{array} \right.\)

Vậy hàm số có dạng: \(y = {x^2} - 4x + 2\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved