Toán 10 tập 2 - Kết nối tri thức với cuộc sống

Bài 6.15 trang 24

Đề bài

Xét dấu các tam thức bậc hai sau:

a) \(3{x^2} - 4x + 1\) 

b) \({x^2} + 2x + 1\)

c) \( - {x^2} + 3x - 2\)   

d) \( - {x^2} + x - 1\)

Phương pháp giải - Xem chi tiết

Xét dấu tam thức bậc hai \(f(x) = a{x^2} + bx + c\)

Bước 1: Tính \(\Delta  = {b^2} - 4ac\)

Bước 2:

-   Nếu \(\Delta  < 0\) thì \(f(x)\) luôn cùng dấu với a với mọi \(x \in \mathbb{R}\)

-   Nếu \(\Delta  = 0\) thì \(f(x)\)có nghiệm kép là  \({x_0}\) . Vậy \(f(x)\)cùng dấu với a với \(x \ne {x_0}\)

-   Nếu \(\Delta  > 0\) thì \(f(x)\)có 2 nghiệm là \({x_1};{x_2}\)\(({x_1} < {x_2})\). Ta lập bảng xét dấu.

Lời giải chi tiết

a) \(f(x) = 3{x^2} - 4x + 1\)có \(\Delta  = 4\)>0, \(a = 3 > 0\)và có hai nghiệm phân biệt \({x_1} = 1;{x_2} = \frac{1}{3}\). Do đó ta có bảng xét dấu \(f(x)\):

Suy ra \(f(x) > 0\)với mọi \(x \in \left( { - \infty ;\frac{1}{3}} \right) \cup \left( {1; + \infty } \right)\) và \(f(x) < 0\)với mọi \(x \in \left( {\frac{1}{3};1} \right)\)

 

b) \(g(x) = {x^2} + 2x + 1\) có \(\Delta  = 0\) và a=1>0 nên \(g(x)\)có nghiệm kép \(x =  - 1\) và \(g(x) > 0\)với \(x \ne  - 1\)

c) \(h(x) =  - {x^2} + 3x - 2\) có \(\Delta  = 1 > 0\), \(a =  - 1\)

 

Suy ra \(h(x) > 0\) với mọi \(x \in (1;2)\)và \(h(x) < 0\)với mọi \(x \in ( - \infty ;1) \cup (2; + \infty )\)

d) \(k(x) =  - {x^2} + x - 1\) có \(\Delta  =  - 3\), a=-1

Suy ra \( k(x) >0 \)với mọi \(x \in \mathbb{R}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved