Đề bài
Cho biết x và y là hai đại lượng tỉ lệ thuận, \({x_1};x{ & _2}\)là hai giá trị khác nhau của x và \({y_1};{y_2}\) là hai giá trị tương ứng của y.
a) Tính giá trị của \({x_1}\), biết \({x_2} = 3;{y_1} = - 5;{y_2} = 9.\)
b) Tính \({x_2}\) và \({y_2}\)biết \({y_2} - {x_2} = - 68;{x_1} = 5;{y_1} = - 12.\)
Phương pháp giải - Xem chi tiết
a)\(\dfrac{{{y_1}}}{{{x_1}}} = \dfrac{{{y_2}}}{{{x_2}}} \Rightarrow {x_1} = \dfrac{{{y_1}.{x_2}}}{{{y_2}}}\).
b) \(\dfrac{{{y_2}}}{{{y_1}}} = \dfrac{{{x_2}}}{{{x_1}}};{y_2} - {x_2} = - 68\).
Lời giải chi tiết
Vì x, y là hai đại lượng tỉ lệ thuận, nên theo tính chất đại lượng tỉ lệ thuận, ta có:
a)\(\dfrac{{{y_1}}}{{{x_1}}} = \dfrac{{{y_2}}}{{{x_2}}} \Rightarrow {x_1} = \dfrac{{{y_1}.{x_2}}}{{{y_2}}} = \dfrac{{ - 5.3}}{9} = - \dfrac{5}{3}\)
b)\(\dfrac{{{y_2}}}{{{y_1}}} = \dfrac{{{x_2}}}{{{x_1}}};{y_2} - {x_2} = - 68\).
Từ tính chất của dãy tỉ số bằng nhau, ta có:\(\dfrac{{{y_2}}}{{{y_1}}} = \dfrac{{{x_2}}}{{{x_1}}} = \dfrac{{{y_2} - {x_2}}}{{{y_1} - {x_1}}} = \dfrac{{ - 68}}{{ - 12 - 5}} = 4\)
Vậy \({x_2} = 4.{x_1} = 4.5 = 20;{y_2} = 4.{y_1} = 4.\left( { - 12} \right) = - 48.\)
Chủ đề 6: Em với công đồng
Chương 8: Làm quen với biến cố và xác suất
Phần Địa lí
Chủ đề 6. Từ
Đề thi giữa kì 1
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7