Đề bài
Bất phương trình \({x^2} - 2mx + 4 > 0\) nghiệm đúng với mọi \(x \in \mathbb{R}\) khi
A. \(m = - 1.\)
B. \(m = - 2.\)
C. \(m = 2.\)
D. \(m > 2.\)
Phương pháp giải - Xem chi tiết
- Tính \(\Delta = {b^2} - 4ac.\)
- Giải bất phương trình \(\Delta < 0\) để bất phương trình có nghiệm đúng với mọi \(x \in \mathbb{R}\)
Lời giải chi tiết
Để \({x^2} - 2mx + 4 > 0\) nghiệm đúng với mọi \(x \in \mathbb{R}\)
\(\begin{array}{l} \Leftrightarrow \,\,\Delta ' < 0\\ \Leftrightarrow \,\,{\left( { - m} \right)^2} - 4 < 0\\ \Leftrightarrow \,\,{m^2} - 4 < 0\end{array}\)
Ta có \(f\left( m \right) = {m^2} - 4\) có hai nghiệm phân biệt \({m_1} = - 2\) và \({m_2} = 2.\)
Mặt khác: \(a = 1 > 0\) nên ta có bảng xét dấu sau:
Vậy tập nghiệm của bất phương trình là: \(S = \left( { - 2;2} \right).\)
Chọn A.
Đề kiếm tra 15 phút
CHỦ ĐỀ IV. PHẢN ỨNG OXI HÓA- KHỬ
Gặp Ka - ríp và Xi- la
Chủ đề 6. Một số nền văn minh trên đất nước Việt Nam (trước 1858)
Chương 5. Vi sinh vật và ứng dụng
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10