Bài 1. Sự xác định đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II. Đường tròn
Đề bài
Cho tam giác \(ABC\) có \(BC = 12cm\), \(\widehat B = 60^\circ ,\widehat C = 40^\circ .\) Tính:
a) Đường cao \(CH\) và cạnh \(AC;\)
b) Diện tích tam giác \(ABC.\)
Phương pháp giải - Xem chi tiết
Trong một tam giác vuông, mỗi cạnh góc vuông bằng: Cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề.
Suy ra cạnh huyền bằng cạnh góc vuông chia sin góc đồi hoặc chia cosin góc kề.
Lời giải chi tiết
a) Trong tam giác vuông BCH, ta có:
\(CH = BC.\sin \widehat B\)\( = 12.\sin 60^\circ \approx 10,392\) (cm)
Trong tam giác ABC, ta có: \(\widehat {BAC} + \widehat B + \widehat {ACB} = {180^0}\) (tổng ba góc trong tam giác bằng \(180^0\))
Suy ra \(\widehat {BAC} = {180^0} - \left( {\widehat B + \widehat {ACB}} \right)\)\(= 180^\circ - (60^\circ + 40^\circ ) = 80^\circ \)
Trong tam giác vuông ACH, ta có:
\(AC = \dfrac{{CH}}{{\sin \widehat {HAC}}}\)\( \approx \dfrac{{10,392}}{{\sin 80^\circ }} = 10,552\) (cm)
b) Kẻ \(AK \bot BC\)
Trong tam giác vuông ACK, ta có:
\(AK = AC.\sin \widehat C\)\( \approx 10,552.\sin 40^\circ = 6,783\) (cm)
Vậy \({S_{ABC}} = \dfrac{1}{ 2}.AK.BC\)\( \approx \dfrac {1}{ 2}.6,783.12 = 40,698\) (cm2)
Đề thi vào 10 môn Anh TP Hồ Chí Minh
Chương 2. Kim loại
Đề thi vào 10 môn Văn Khánh Hòa
Đề thi vào 10 môn Toán Kiên Giang
Bài 9: Làm việc có năng suất, chất lượng, hiệu quả