1. Nội dung câu hỏi
Giải các bất phương trình sau:
a) \({\left( {\frac{1}{2}} \right)^{3x - 1}} \ge 4 \cdot {2^x}\)
b) \(2{\rm{log}}\left( {x - 1} \right) > {\rm{log}}\left( {3 - x} \right) + 1\).
2. Phương pháp giải
Áp dụng tính chất của lũy thừa, quy tắc tính lôgarit để đưa về cùng cơ số
\({a^{f\left( x \right)}} > {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) > g\left( x \right)\,{\rm{(khi}}\,a > 1{\rm{)}}\)
\({a^{f\left( x \right)}} > {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) < g\left( x \right)\,{\rm{(khi ) }}0 < \,a < 1{\rm{)}}\)
\({\log _a}f\left( x \right) > {\log _a}g\left( x \right) \Leftrightarrow f\left( x \right) > g\left( x \right) > 0\,\,(a > 1)\)
\({\log _a}f\left( x \right) > {\log _a}g\left( x \right) \Leftrightarrow 0 < f\left( x \right) < g\left( x \right)\,\,(0 < a < 1)\)
3. Lời giải chi tiết
a) \({\left( {\frac{1}{2}} \right)^{3x - 1}} \ge 4 \cdot {2^x} \Leftrightarrow {2^{1 - 3x}} \ge {2^{2 + x}} \Leftrightarrow 1 - 3x \ge 2 + x \Leftrightarrow x \le - \frac{1}{4}\).
b) Điều kiện: \(1 < x < 3\). Khi đó, ta có:
\(2{\rm{log}}\left( {x - 1} \right) > {\rm{log}}\left( {3 - x} \right) + 1 \Leftrightarrow {\rm{log}}{(x - 1)^2} > {\rm{log}}10\left( {3 - x} \right)\)
\( \Leftrightarrow {(x - 1)^2} > 10\left( {3 - x} \right) \Leftrightarrow {x^2} + 8x - 29 > 0\).
Giải bất phương trình này ta được \(x > - 4 + 3\sqrt 5 \) hoặc \(x < - 4 - 3\sqrt 5 \).
Kết hợp với điều kiện, ta được \( - 4 + 3\sqrt 5 < x < 3\).
Review (Units 5 - 6)
Câu hỏi tự luyện Hóa 11
Chủ đề 3: Kĩ thuật nhảy ném rổ và chiến thuật tấn công trong bóng rổ
Chương 5. Hidrocacbon No
Hello!
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11