SBT TOÁN TẬP 2 - KẾT NỐI TRI THỨC VỚI CUỘC SỐNG

Giải bài 6.61 trang 27 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Đề bài

Cho hình chữ nhật ABCD có AB = 6 cm, AD = 13 cm. Tìm vị trí điểm M trên cạnh AD sao cho BM = 2MD

Phương pháp giải - Xem chi tiết

Bước 1: Gọi x là độ dài AM. Biểu diễn độ dài BM và MD theo x

Bước 2: Lập phương trình ẩn x theo giả thiết BM = 2MD

Bước 3: Giải phương trình vừa tìm được ở bước 2 rồi kết luận

Lời giải chi tiết

Gọi x (cm) (0 < x < 13) là độ dài AM.

Khi đó MD = 13 – x (cm) và BM = \(\sqrt {A{M^2} + A{B^2}}  = \sqrt {{x^2} + 36} \) (cm)

Theo giả thiết, BM = 2MD \( \Leftrightarrow \sqrt {{x^2} + 36}  = 2(13 - x)\) (*)

Bình phương 2 vế PT (*) ta có:

\({x^2} + 36 = 4{x^2} - 104x + 676 \Leftrightarrow 3{x^2} - 104x + 640 = 0 \Leftrightarrow x = \frac{{80}}{3}\) hoặc x = 8

Kết hợp với điều kiện, PT (*) có nghiệm duy nhất x = 8

Vậy với AM = 8 cm thì BM = 2MD.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved