Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Áp dụng bất đẳng thức Cô-si cho hai số không âm, chứng minh:
LG câu a
LG câu a
Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.
Phương pháp giải:
Áp dụng bất đẳng thức Cô-si với hai số không âm \(a\),\(b\):
\( \displaystyle \displaystyle{{a + b} \over 2} \ge \sqrt {ab} \)
Dấu "=" xảy ra khi \(a = b\).
Lời giải chi tiết:
Gọi hình chữ nhật có chiều dài \(a\) và chiều rộng \(b\) (với \(a>b>0\))
Các hình chữ nhật có cùng chu vi thì \(C = 2.(a + b)\) không đổi hay \((a + b)\) không đổi.
Suy ra: \(\displaystyle{{a + b} \over 2}\) không đổi.
Diện tích của hình chữ nhật \(S=a.b\)
Áp dụng bất đẳng thức Cô-si:
\( \displaystyle \displaystyle{{a + b} \over 2} \ge \sqrt {ab} \)
\( \displaystyle\begin{array}{l}
\Leftrightarrow ab \le {\left( {\dfrac{{a + b}}{2}} \right)^2}\\
\Leftrightarrow S \le {\left( {\dfrac{{a + b}}{2}} \right)^2}
\end{array}\)
Dấu "=" xảy ra khi \(a=b.\) Hay hình chữ nhật có hai cạnh kề bằng nhau nên nó là hình vuông.
Vậy để \( {S_{\max }} = {\left( {\dfrac{{a + b}}{2}} \right)^2}\) thì hình chữ nhật là hình vuông.
Điều này cho thấy trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.
(Chú ý: max là lớn nhất)
LG câu b
LG câu b
Trong các hình chữ nhật có cùng diện tích thì hình vuông có chu vi bé nhất.
Phương pháp giải:
Áp dụng bất đẳng thức Cô-si với hai số không âm \(a\),\(b\):
\( \displaystyle \displaystyle{{a + b} \over 2} \ge \sqrt {ab} \)
Dấu "=" xảy ra khi \(a = b\).
Lời giải chi tiết:
Gọi hình chữ nhật có chiều dài \(a\) và chiều rộng \(b\) (với \(a>b>0\))
Các hình chữ nhật có cùng diện tích \(S=a.b\) thì \(a.b\) không đổi.
Từ bất đẳng thức:
\( \displaystyle{{a + b} \over 2} \ge \sqrt {ab} \)
\( \Leftrightarrow a + b \le 2\sqrt {ab} \)
\( \Leftrightarrow 2.(a + b) \le 4\sqrt {ab} \)
\( \Leftrightarrow C \le 4\sqrt {ab} \)
Dấu "=" xảy ra khi \(a=b\)
Vậy để \({C_{\min }} = 4\sqrt {ab} \) thì hình chữ nhật là hình vuông.
Điều này cho thấy trong các hình chữ nhật có cùng diện tích thì hình vuông có chu vi bé nhất.
(Chú ý: min là nhỏ nhất)
Đề kiểm tra 15 phút - Chương 3 – Hóa học 9
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Vật lí lớp 9
Bài 11. Các nhân tố ảnh hưởng đến sự phát triển và phân bố công nghiệp
Bài 16. Thực hành: Vẽ biểu đồ về sự thay đổi cơ cấu kinh tế
PHẦN HAI: LỊCH SỬ VIỆT NAM TỪ NĂM 1919 ĐẾN NAY