Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Rút gọn các biểu thức :
LG câu a
LG câu a
\(\sqrt {75} + \sqrt {48} - \sqrt {300} \);
Phương pháp giải:
Áp dụng: Với \(B\ge 0\) ta có
\(\sqrt {{A^2}B} = \left\{ \begin{array}{l}
A\sqrt B \,\,khi\,\,A \ge 0\\
- A\sqrt B \,\,khi\,\,A < 0
\end{array} \right.\)
Lời giải chi tiết:
\(\sqrt {75} + \sqrt {48} - \sqrt {300} \\\sqrt {5^2.3} + \sqrt {4^2.3} - \sqrt {10^2.3}\\
= \sqrt {25.3} + \sqrt {16.3} - \sqrt {100.3} \)
\( = 5\sqrt 3 + 4\sqrt 3 - 10\sqrt 3 = - \sqrt 3 \)
LG câu b
LG câu b
\(\sqrt {98} - \sqrt {72} + 0,5\sqrt 8 \);
Phương pháp giải:
Áp dụng: Với \(B\ge 0\) ta có
\(\sqrt {{A^2}B} = \left\{ \begin{array}{l}
A\sqrt B \,\,khi\,\,A \ge 0\\
- A\sqrt B \,\,khi\,\,A < 0
\end{array} \right.\)
Lời giải chi tiết:
\(\sqrt {98} - \sqrt {72} + 0,5\sqrt 8 \\
=\sqrt {49.2} - \sqrt {36.2} + 0,5\sqrt {4.2}\\=\sqrt {7^2.2} - \sqrt {6^2.2} + 0,5\sqrt {2^2.2} \)
\( = 7\sqrt 2 - 6\sqrt 2 + 0,5.2\sqrt 2 \)
\( = 7\sqrt 2 - 6\sqrt 2 + \sqrt 2 = 2\sqrt 2 \)
LG câu c
LG câu c
\(\sqrt {9a} - \sqrt {16a} + \sqrt {49a} \) với \(a \ge 0\);
Phương pháp giải:
Áp dụng: Với \(B\ge 0\) ta có
\(\sqrt {{A^2}B} = \left\{ \begin{array}{l}
A\sqrt B \,\,khi\,\,A \ge 0\\
- A\sqrt B \,\,khi\,\,A < 0
\end{array} \right.\)
Lời giải chi tiết:
\(\sqrt {9a} - \sqrt {16a} + \sqrt {49a}=\sqrt {3^2.a} - \sqrt {4^2.a} + \sqrt {7^2.a}\\
= 3\sqrt a - 4\sqrt a + 7\sqrt a\\
= 6\sqrt a \,(với \, a\ge 0)\cr} \)
LG câu d
LG câu d
\(\sqrt {16b} + 2\sqrt {40b} - 3\sqrt {90b} \) với \(b \ge 0\).
Phương pháp giải:
Áp dụng: Với \(B\ge 0\) ta có
\(\sqrt {{A^2}B} = \left\{ \begin{array}{l}
A\sqrt B \,\,khi\,\,A \ge 0\\
- A\sqrt B \,\,khi\,\,A < 0
\end{array} \right.\)
Lời giải chi tiết:
\( \sqrt {16b} + 2\sqrt {40b} - 3\sqrt {90b} \\
= \sqrt {4^2.b} + 2\sqrt {2^2.10b} - 3\sqrt {3^2.10b} \)
\(\eqalign{
& = 4\sqrt b + 4\sqrt {10b} - 9\sqrt {10b} \cr
& = 4\sqrt b - 5\sqrt {10b} \,\,(với \, b \ge 0)\cr} \)
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Ngữ văn lớp 9
CHƯƠNG 5. DẪN XUẤT CỦA HIĐROCACBON. POLIME
ĐỀ KIỂM TRA HỌC KÌ 2 (ĐỀ THI HỌC KÌ 2) - HÓA HỌC 9
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Vật lí lớp 9
Đề thi vào 10 môn Toán Hải Dương