Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Trục căn thức ở mẫu và rút gọn (nếu được):
LG câu a
LG câu a
\( \displaystyle{{\sqrt 5 - \sqrt 3 } \over {\sqrt 2 }}\);
Phương pháp giải:
Áp dụng:
\(\dfrac{A}{{\sqrt B }} = \dfrac{{A\sqrt B }}{B}\) với \(B>0\).
Lời giải chi tiết:
\( \displaystyle{{\sqrt 5 - \sqrt 3 } \over {\sqrt 2 }}\) \( \displaystyle = {{(\sqrt 5 - \sqrt 3 )\sqrt 2 } \over {{{(\sqrt 2 )}^2}}} = {{\sqrt {10} - \sqrt 6 } \over 2}\)
LG câu b
LG câu b
\( \displaystyle{{26} \over {5 - 2\sqrt 3 }}\);
Phương pháp giải:
Áp dụng:
\(\dfrac{A}{{\sqrt B \pm C}} = \dfrac{{A(\sqrt B \mp C)}}{{B - {C^2}}}\) với \(B\ge 0, B\ne C^2\).
Lời giải chi tiết:
\( \displaystyle{{26} \over {5 - 2\sqrt 3 }}\) \( \displaystyle = {{26(5 + 2\sqrt 3 )} \over {(5 - 2\sqrt 3 )(5 + 2\sqrt 3 )}}\) \( \displaystyle = {{26(5 + 2\sqrt 3 )} \over {25 - 12}}\)
\( \displaystyle = {{26(5 + 2\sqrt 3 )} \over {13}}\) \( \displaystyle = 2(5 + 2\sqrt 3 ) = 10 + 4\sqrt 3 \)
LG câu c
LG câu c
\( \displaystyle{{2\sqrt {10} - 5} \over {4 - \sqrt {10} }}\);
Phương pháp giải:
Rút gọn rồi áp dụng:
\(\dfrac{A}{{\sqrt B }} = \dfrac{{A\sqrt B }}{B}\) với \(B>0\).
Lời giải chi tiết:
\( \displaystyle{{2\sqrt {10} - 5} \over {4 - \sqrt {10} }}\) \( \displaystyle = {{2\sqrt {2.5} - \sqrt {{5^2}} } \over {2\sqrt {{2^2}} - \sqrt {2.5} }}\)
\( \displaystyle = {{\sqrt 5 (2\sqrt 2 - \sqrt 5 )} \over {\sqrt 2 (2\sqrt 2 - \sqrt 5 )}} = {{\sqrt 5 } \over {\sqrt 2 }} = {{\sqrt 5 .\sqrt 2 } \over {{{(\sqrt 2 )}^2}}}\) \( \displaystyle = {{\sqrt {10} } \over 2}\)
LG câu d
LG câu d
\( \displaystyle{{9 - 2\sqrt 3 } \over {3\sqrt 6 - 2\sqrt 2 }}\).
Phương pháp giải:
Rút gọn rồi áp dụng:
\(\dfrac{A}{{\sqrt B }} = \dfrac{{A\sqrt B }}{B}\) với \(B>0\).
Lời giải chi tiết:
\( \displaystyle{{9 - 2\sqrt 3 } \over {3\sqrt 6 - 2\sqrt 2 }}\) \( \displaystyle= {{3(\sqrt {{3}})^2 - 2\sqrt 3 } \over {3\sqrt {3.2} - 2\sqrt 2 }}\)
\( \displaystyle = {{\sqrt 3 (3\sqrt 3 - 2)} \over {\sqrt 2 (3\sqrt 3 - 2)}} = {{\sqrt 3 } \over {\sqrt 2 }} = {{\sqrt {3.} \sqrt 2 } \over {{{(\sqrt 2 )}^2}}}\) \( \displaystyle= {{\sqrt 6 } \over 2}\)
Bài 17: Nghĩa vụ bảo vệ Tổ quốc
Đề thi vào 10 môn Văn Vĩnh Long
Bài 23
Bài 16: Quyền tham gia quản lý nhà nước, quản lý xã hội của công dân
Bài 38. Phát triển tổng hợp kinh tế và bảo vệ tài nguyên, môi trường Biển - Đảo