Đề bài
Một hộp chứa 2 quả bóng xanh và 1 số quả bóng trắng. Lấy ra ngẫu nhiên 2 quả bóng từ hộp. Biết rằng xác suất chọn được 2 quả bóng khác màu là \(\frac{{10}}{{21}}\).
a) Tính xác suất 2 quả bóng lấy ra cùng màu
b) Hỏi trong hộp có bao nhiêu quả bóng?
Phương pháp giải - Xem chi tiết
Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)
Biến cố đối của biến cố A là biến cố không xảy ra A, kí hiệu là \(\overline A \) và \(P\left( {\overline A } \right) + P\left( A \right) = 1\)
Lời giải chi tiết
a) Gọi A là biến cố “lấy được hai quả bóng cùng màu”
\( \Rightarrow \) Biến cố đối \(\overline A \): “lấy được hai quả bóng khác màu”
Mà \(P(\overline A ) = \frac{{10}}{{21}}\)
\( \Rightarrow P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{10}}{{21}} = \frac{{11}}{{21}}\)
b) Gọi k là số quả bóng trắng trong hộp \(\left( {k \in N*} \right)\).
Số cách lấy 2 quả bóng bất kì từ (k+2) quả bóng là \(C_{k + 2}^2\)
Việc lấy được 2 quả bóng khác màu được thực hiện qua 2 công đoạn:
Công đoạn 1: Chọn 1 quả bóng xanh, có 2 cách
Công đoạn 2: Chọn 1 quả bóng trắng, có k cách
=> Có 2.k cách để lấy đc 2 quả bóng khác màu.
Xác suất lấy được 2 quả bóng khác màu là:
\(\begin{array}{l}\frac{{10}}{{21}} = \frac{{2k}}{{C_{k + 2}^2}} = \frac{{4k}}{{\left( {k + 1} \right)\left( {k + 2} \right)}}\\ \Rightarrow 10\left( {k + 1} \right)\left( {k + 2} \right) = 21.4k\\ \Leftrightarrow 10{k^2} - 54k + 20 = 0\\ \Leftrightarrow \left[ \begin{array}{l}k = 5\\k = \frac{2}{5}\end{array} \right.\\ \Rightarrow k = 5\end{array}\)
Do đó trong hộp có 2 quả bóng xanh và 5 quả bóng trắng.
Vậy, trong hộp có 7 quả bóng
Chủ đề 1: Nền kinh tế và các chủ thể của nền kinh tế
Đề thi giữa kì 1
Chủ đề 4: Sản xuất kinh doanh và các mô hình sản xuất kinh doanh
Chủ đề 5. Chuyển động tròn và biến dạng
Chủ đề 3. Một số hiểu biết về phòng thủ dân sự
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10