Giải bài 7 trang 25 SBT toán 10 - Cánh diều

Đề bài

Biểu diễn miền nghiệm của mỗi bất phương trình sau:

a) \(3x + 5y < 15\)           b) \(x - 2y \ge 6\)

c) \(y >  - x + 3\)                        d) \(y \ge 4 - 2x\)

Phương pháp giải - Xem chi tiết

Bước 1: Vẽ đường thẳng \(d:x - 2y = 4\).

Bước 2: Lấy một điểm \(M\left( {{x_o};{y_o}} \right)\) không nằm trên d (ta thường lấy gốc tọa độ O nếu \(c \ne 0\). Tính \(a{x_o} + b{y_o}\) và so sánh với c

Bước 3: Kết luận

  • Nếu \(a{x_o} + b{y_o} < c\)thì nửa mặt phẳng (không kể đường thẳng d) chứa điểm M là miền nghiệm của bất phương trình \(ax + by < c\)
  • Nếu \(a{x_o} + b{y_o} > c\) thì nửa mặt phẳng (không kể d) không chứa điểm M là miền nghiệm của bất phương trình \(ax + by > c\)

Lời giải chi tiết

a) Biểu diễn miền nghiệm của bất phương trình 3x + 5y < 15

+) Vẽ đường thẳng d: 3x + 5y = 15 đi qua hai điểm (0; 3) và (5; 0).

+) Lấy điểm O(0; 0), ta có: 3.0 + 5.0 = 0 < 15. 

=> Gốc tọa độ thuộc miền nghiệm của BPT

Vậy miền nghiệm của bất phương trình đã cho là nửa mặt phẳng bờ d (không kể d), chứa điểm O(0; 0).

b) Biểu diễn miền nghiệm của bất phương trình x – 2y ≥ 6:

+) Vẽ đường thẳng d: x – 2y = 6 đi qua hai điểm (0; – 3) và (6; 0).

+) Lấy điểm O(0; 0), ta có: 0 – 2.0 = 0 < 6. 

=> O(0;0) không thuộc miền nghiệm.

Vậy miền nghiệm của bất phương trình đã cho là nửa mặt phẳng bờ d (kể cả d), không chứa điểm O(0; 0).

c) Biểu diễn miền nghiệm của bất phương trình y > – x + 3 hay x + y > 3

+) Vẽ đường thẳng d: x + y = 3 đi qua hai điểm (0; 3) và (3; 0).

+) Lấy điểm O(0; 0), ta có: 0 + 0 = 0 < 3 nên O(0;0) không thuộc miền nghiệm.

Vậy miền nghiệm của bất phương trình đã cho là nửa mặt phẳng bờ d (không kể d), không chứa điểm O(0; 0):

d) Biểu diễn miền nghiệm của bất phương trình y ≤ 4 – 2x hay 2x + y ≤ 4 gồm các bước sau:

+) Vẽ đường thẳng d: 2x + y = 4:

Đường thẳng d đi qua hai điểm (2; 0) và (0; 4).

+) Lấy điểm O(0; 0), ta có: 2.0 + 0 = 0 ≤ 4 . 

Vậy miền nghiệm của bất phương trình đã cho là nửa mặt phẳng chứa điểm O(0; 0) và kể cả đường thẳng d là nửa mặt phẳng tô màu trong hình sau:

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved