1. Nội dung câu hỏi
Dùng định nghĩa để tính đạo hàm của các hàm số sau:
a) \(f\left( x \right) = \sqrt {4x + 1} \) tại \(x = 2\);
b) \(f\left( x \right) = {x^4}\) tại \(x = - 1\);
c) \(f\left( x \right) = \frac{1}{{x + 1}}\);
d) \(f\left( x \right) = \sqrt[3]{{{x^2} + 1}}\).
2. Phương pháp giải
Sử dụng kiến thức về định nghĩa đạo hàm để tính: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;b} \right)\) và \({x_0} \in \left( {a;b} \right)\). Nếu tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) thì giới hạn này được gọi là đạo hàm của hàm số f(x) tại \({x_0}\), kí hiệu là \(f'\left( {{x_0}} \right)\) hoặc \(y'\left( {{x_0}} \right)\). Vậy \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\)
3. Lời giải chi tiết
a) Với bất kì \({x_0} \ge \frac{{ - 1}}{4}\) ta có: \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt {4x + 1} - \sqrt {4{x_0} + 1} }}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {\sqrt {4x + 1} - \sqrt {4{x_0} + 1} } \right)\left( {\sqrt {4x + 1} + \sqrt {4{x_0} + 1} } \right)}}{{\left( {x - {x_0}} \right)\left( {\sqrt {4x + 1} + \sqrt {4{x_0} + 1} } \right)}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{4x + 1 - 4{x_0} - 1}}{{\left( {x - {x_0}} \right)\left( {\sqrt {4x + 1} + \sqrt {4{x_0} + 1} } \right)}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{4\left( {x - {x_0}} \right)}}{{\left( {x - {x_0}} \right)\left( {\sqrt {4x + 1} + \sqrt {4{x_0} + 1} } \right)}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{4}{{\left( {\sqrt {4x + 1} + \sqrt {4{x_0} + 1} } \right)}} = \frac{4}{{2\sqrt {4{x_0} + 1} }} = \frac{2}{{\sqrt {4{x_0} + 1} }}\)
Suy ra: \(f'\left( x \right) = \frac{2}{{\sqrt {4x + 1} }}\). Do đó, \(f'\left( 2 \right) = \frac{2}{{\sqrt {4.2 + 1} }} = \frac{2}{3}\)
b) Với bất kì \({x_0}\) ta có: \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^4} - x_0^4}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {{x^2} + x_0^2} \right)\left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x_0^2} \right)\left( {x + {x_0}} \right) = \left( {x_0^2 + x_0^2} \right)\left( {{x_0} + {x_0}} \right) = 2x_0^2.2{x_0} = 4x_0^3\)
Do đó, \(f'\left( x \right) = 4{x^3}\). Suy ra \(f'\left( { - 1} \right) = 4.{\left( { - 1} \right)^3} = - 4\)
c) Với bất kì \({x_0} \ne - 1\) ta có: \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{1}{{x + 1}} - \frac{1}{{{x_0} + 1}}}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x_0} + 1 - x - 1}}{{\left( {x - {x_0}} \right)\left( {x + 1} \right)\left( {{x_0} + 1} \right)}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - \left( {x - {x_0}} \right)}}{{\left( {x - {x_0}} \right)\left( {x + 1} \right)\left( {{x_0} + 1} \right)}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - 1}}{{\left( {x + 1} \right)\left( {{x_0} + 1} \right)}}\)
\( = - \frac{1}{{{{\left( {{x_0} + 1} \right)}^2}}}\)
Vậy \(f'\left( x \right) = \frac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}\)
d) Với bất kì \({x_0}\) ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt[3]{{{x^2} + 1}} - \sqrt[3]{{x_0^2 + 1}}}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {\sqrt[3]{{{x^2} + 1}} - \sqrt[3]{{x_0^2 + 1}}} \right)\left( {\sqrt[3]{{{{\left( {{x^2} + 1} \right)}^2}}} + \sqrt[3]{{\left( {{x^2} + 1} \right)\left( {x_0^2 + 1} \right)}} + \sqrt[3]{{{{\left( {x_0^2 + 1} \right)}^2}}}} \right)}}{{\left( {x - {x_0}} \right)\left( {\sqrt[3]{{{{\left( {{x^2} + 1} \right)}^2}}} + \sqrt[3]{{\left( {{x^2} + 1} \right)\left( {x_0^2 + 1} \right)}} + \sqrt[3]{{{{\left( {x_0^2 + 1} \right)}^2}}}} \right)}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^2} + 1 - x_0^2 - 1}}{{\left( {x - {x_0}} \right)\left( {\sqrt[3]{{{{\left( {{x^2} + 1} \right)}^2}}} + \sqrt[3]{{\left( {{x^2} + 1} \right)\left( {x_0^2 + 1} \right)}} + \sqrt[3]{{{{\left( {x_0^2 + 1} \right)}^2}}}} \right)}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{\left( {x - {x_0}} \right)\left( {\sqrt[3]{{{{\left( {{x^2} + 1} \right)}^2}}} + \sqrt[3]{{\left( {{x^2} + 1} \right)\left( {x_0^2 + 1} \right)}} + \sqrt[3]{{{{\left( {x_0^2 + 1} \right)}^2}}}} \right)}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x + {x_0}}}{{\sqrt[3]{{{{\left( {{x^2} + 1} \right)}^2}}} + \sqrt[3]{{\left( {{x^2} + 1} \right)\left( {x_0^2 + 1} \right)}} + \sqrt[3]{{{{\left( {x_0^2 + 1} \right)}^2}}}}} = \frac{{2{x_0}}}{{3\sqrt[3]{{{{\left( {x_0^2 + 1} \right)}^2}}}}}\)
Vậy \(f'\left( x \right) = \frac{{2x}}{{3\sqrt[3]{{{{\left( {{x^2} + 1} \right)}^2}}}}}\).
Unit 2: The generation gap
Chủ đề 1. Giới thiệu chung về cơ khí chế tạo
Chuyên đề III. Một số yếu tố vẽ kĩ thuật
Chương 5. Mối quan hệ giữa các quá trình sinh lí trong cơ thể sinh vật và một số ngành nghề liên quan đến sinh học cơ thể
Chủ đề 4. Trách nhiệm với gia đình
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11