1. Nội dung câu hỏi
Biết rằng, từ vị trí A, một mũi tên bay với tốc độ 10m/s hướng thẳng tới bia mục tiêu đặt ở vị trí B cách vị trí A một khoảng bằng 10m (Hình 2). Một nhà thông thái lập luận như sau: “Để đến được B, trước hết mũi tên phải đến trung điểm \({A_1}\) của AB. Tiếp theo, nó phải đến trung điểm \({A_2}\) của \({A_1}B\). Tiếp nữa, nó phải đi đến trung điểm \({A_3}\) của \({A_2}B\). Cứ tiếp tục như vậy, vì không bao giờ hết các trung điểm nên mũi tên không thể đến được mục tiêu ở B”.
Lập luận trên có đúng không? Nếu không, hãy chỉ chỗ ra sai lầm.
2. Phương pháp giải
Sử dụng kiến thức về tổng của cấp số nhân lùi vô hạn để tính tổng: Cấp số nhân vô hạn \(\left( {{u_n}} \right)\) có công bội q thỏa mãn \(\left| q \right| < 1\) được gọi là cấp số nhân lùi vô hạn. Cấp số nhân lùi vô hạn này có tổng là: \(S = {u_1} + {u_2} + ... + {u_n} + ... = \frac{{{u_1}}}{{1 - q}}\)
3. Lời giải chi tiết
Thời gian để mũi tên bay từ A đến \({A_1}\) là \(\frac{1}{2}\) giây, từ \({A_1}\) đến \({A_2}\) là \(\frac{1}{4} = \frac{1}{{{2^2}}}\) giây, từ \({A_2}\) đến \({A_3}\) là \(\frac{1}{8} = \frac{1}{{{2^3}}}\) giây\(,...\)
Tổng thời gian bay của mũi tên là: \(\frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + ... + \frac{1}{{{2^n}}} + ...\left( * \right)\)
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là \(\frac{1}{2}\) và công bội bằng \(\frac{1}{2}\).
Do đó, tổng này bằng: \(\frac{1}{2}.\frac{1}{{1 - \frac{1}{2}}} = 1\) (giây)
Như vậy, mũi tên đến bia mục tiêu sau 1 giây.
Lập luận của nhà thông thái là không đúng, sai lầm ở chỗ cho rằng tổng ở (*) không phải là một số hữu hạn.
Chủ đề 6: Hợp chất carbonyl - Carboxylic acid
Chủ đề 1: Vai trò, tác dụng của môn cầu lông; kĩ thuật bạt cầu
SOẠN VĂN VĂN 11 TẬP 2
Chủ đề 4: Kĩ thuật treo cầu thuận tay và phối hợp kĩ thuật, chiến thuật cơ bản
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương I - Hóa học 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11