PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 2

Bài 7.1 phần bài tập bổ sung trang 107 SBT toán 9 tập 2

Đề bài

Cho tam giác \(ABC\) có ba góc nhọn. Vẽ các đường cao \(AI, BK, CL\) của tam giác ấy.Gọi \(H\) là giao điểm của các đường cao vừa vẽ.

\(a)\) Chỉ ra các tứ giác nội tiếp có đỉnh lấy trong số các điểm \(A, B, C, H, I, K, L\)

\(b)\) Chứng minh \(\widehat {LBH},\widehat {LIH},\widehat {KIH}\) và \(\widehat {KCH}\) là \(4\) góc bằng nhau.

\(c)\) Chứng minh \(KB\) là tia phân giác của \(\widehat {LKI}.\)

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Nếu một tứ giác có tổng số đo hai góc đối nhau bằng \(180^\circ\) thì tứ giác đó nội tiếp được đường tròn.

+) Tứ giác có hai đỉnh cùng nhìn một cạnh dưới một góc vuông là tứ giác nội tiếp.

+) Trong một đường tròn, các góc nội tiếp cùng chắn một cung thì bằng nhau.

Lời giải chi tiết

 

Vì \(∆ABC\) là tam giác nhọn nên ba đường cao cắt nhau tại điểm \(H\) nằm trong tam giác \(ABC.\)

\(a)\) Tứ giác \(AKHL\) có: \(\widehat {AKH} + \widehat {ALH} = 90^\circ  + 90^\circ  = 180^\circ \)

Nên tứ giác \(AKHL\) nội tiếp.

\(+)\) Tứ giác \(BIHL\) có: \(\widehat {BIH} + \widehat {BLH} = 90^\circ  + 90^\circ  = 180^\circ \)

Nên tứ giác \(BIHL\) nội tiếp.

\(+)\) Tứ giác \(CIHK\) có: \(\widehat {CIH} + \widehat {CKH} = 90^\circ  + 90^\circ  = 180^\circ \)

Nên tứ giác \(CIHK\) nội tiếp.

\(+)\) Tứ giác \(ABIK\) có: \(\widehat {AKB} = 90^\circ;\widehat {AIB} = 90^\circ \)

\(K\) và \(I\) nhìn đoạn \(AB\) dưới một góc vuông nên tứ giác \(ABIK\) nội tiếp.

\(+)\) Tứ giác \(BCKL\) có \(\widehat {BKC} = 90^\circ;\widehat {BLC} = 90^\circ \)

Suy ra\(K\) và \(L\) nhìn đoạn \(BC\) dưới một góc vuông nên tứ giác \(BCKL\) nội tiếp.

\(+)\) Tứ giác \(ACIL\) có \(\widehat {AIC} = 90^\circ;\widehat {ALC} = 90^\circ \)

Suy ra\(I\) và \(L\) nhìn đoạn \(AC\) dưới một góc vuông nên tứ giác \(ACIL\) nội tiếp.

\(b)\) Tứ giác \(BIHL\) nội tiếp.

\( \Rightarrow \widehat {LBH} = \widehat {LIH}\) \((\)\(2\) góc nội tiếp cùng chắn cung nhỏ \(\overparen{LH}\)\()\) \( \;\;(1)\)

Tứ giác \(CIHK\) nội tiếp.

\( \Rightarrow \widehat {HIK} = \widehat {HCK}\) \((2\) góc nội tiếp cùng chắn cung nhỏ \(\overparen{HK}\)\()\)         \(\;\;(2)\)

Tứ giác \(BCKL\) nội tiếp.

\( \Rightarrow \widehat {LBK} = \widehat {LCK}\) \((2\) góc nội tiếp cùng chắn cung nhỏ \(\overparen{LK}\)) hay \(\widehat {LBH} = \widehat {HCK}\) \(  \;\;(3)\)

Từ \((1),\) \((2)\) và \((3)\) suy ra \(\widehat {LBH}=\widehat {LIH}=\widehat {KIH}\)\(=\widehat {KCH}\)

 

c) Tứ giác \(CIHK\) nội tiếp.

\( \Rightarrow \widehat {ICH} = \widehat {IKH}\) \((\)\(2\) góc nội tiếp cùng chắn cung nhỏ \(\overparen{IH}\)\()\) \( \;\;(*)\)

Tứ giác \(LKCB\) nội tiếp.

\( \Rightarrow \widehat {LCB} = \widehat {LKB}\) \((\)\(2\) góc nội tiếp cùng chắn cung nhỏ \(\overparen{LB}\)\()\) \( \;\;(**)\)

Từ (*) và (**) suy ra \(\widehat {LKH} = \widehat {HKI}\). Vậy \(KB\) là tia phân giác của \(\widehat {LKI}.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved