PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 71 trang 88 SBT toán 8 tập 1

Đề bài

Chứng minh rằng giao điểm hai đường chéo của hình thang cân nằm trên trục đối xứng của hình thang cân.

Phương pháp giải - Xem chi tiết

+) Trong hình thang cân, hai cạnh bên bằng nhau.

+) Trong hình thang cân, hai đường chéo bằng nhau.

+) Đường thẳng đi qua trung điểm hai đáy của hình thang cân là trục đối xứng của hình thang cân đó.

Lời giải chi tiết

 

Hình thang cân \(ABCD\) có \(AB // CD.\) Gọi \(O\) là giao điểm của hai đường chéo \(AC\) và \(BD.\)

Xét \(∆ ADC\) và \(∆ BCD:\)

\(AD = BC\) ( tính chất hình thang cân)

\(AC = BD\) ( tính chất hình thang cân)

\(CD\) cạnh chung

Do đó \(∆ ADC = ∆ BCD \;\;(c.c.c)\)

\( \Rightarrow {\widehat D_1} = {\widehat C_1}\)  

\(⇒ ∆ OCD\) cân tại \(O\)

\(⇒ OC = OD\) nên \(O\) nằm trên đường trung trực của \(CD.\)

Trục đối xứng của hình thang cân là đường thẳng trung trực của hai đáy.

Vậy \(O\) thuộc trục đối xứng của hình thang cân.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved