1. Nội dung câu hỏi
Cho hình hộp \(ABCD \cdot A'B'C'D'\) có đáy \(ABCD\) là hình vuông cạnh a và \(AA' = a\sqrt 2 \), hình chiếu vuông góc của \(A\) trên mặt phẳng \(\left( {A'B'C'D'} \right)\) trùng với trung điểm của \(B'D'\). Tính góc giữa đường thẳng \(AA'\) và mặt phẳng \(\left( {A'B'C'D'} \right)\).
2. Phương pháp giải
Gọi \(O\) là giao điểm của \(A'C'\) và \(B'D'\).
Xác định hình chiếu vuông góc của \(AA'\) trên mặt phẳng \(\left( {A'B'CD'} \right)\).
Tính góc giữa đường thẳng \(AA'\) và hình chiếu của nó rồi kết luận.
Áp dụng tỉ số lượng giác cho tam giác vuông để tính góc.
3. Lời giải chi tiết
Gọi \(O\) là giao điểm của \(A'C'\) và \(B'D'\).
Ta có: \(A'O\) là hình chiếu vuông góc của \(AA'\) trên mặt phẳng \(\left( {A'B'CD'} \right)\), góc giữa đường thẳng \(AA'\) và mặt phẳng \(\left( {A'B'C'D'} \right)\) bằng góc giữa \(AA'\) và \(A'O\).
Mà \(\left( {AA',A'O} \right) = \widehat {AA'O}\), ta lại có \(A'O = \frac{{a\sqrt 2 }}{2}\).
Do đó \({\rm{cos}}\widehat {AA'O} = \frac{{OA'}}{{AA'}} = \frac{1}{2}\),
Suy ra \(\widehat {AA'O} = {60^ \circ }\).
Vậy góc giữa đường thẳng \(AA'\) và mặt phẳng \(\left( {A'B'C'D'} \right)\) bằng \({60^ \circ }\).
Unit 7: Healthy lifestyle
SGK Ngữ Văn 11 - Cánh Diều tập 1
Unit 7: Independent living
SBT Toán 11 - Cánh Diều tập 2
Chương 1. Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11