1. Nội dung câu hỏi
Giải phương trình:
a) \(\sin \left( {2x - \frac{\pi }{6}} \right) = - \frac{1}{2}\)
b) \(\sin \left( {\frac{x}{3} + \frac{\pi }{2}} \right) = \frac{{\sqrt 3 }}{2}\)
c) \(\cos \left( {2x + \frac{\pi }{5}} \right) = \frac{{\sqrt 2 }}{2}\)
d) \(2\cos \frac{x}{2} + \sqrt 3 = 0\)
e) \(\sqrt 3 \tan \left( {2x + \frac{\pi }{3}} \right) - 1 = 0\)
g) \(\cot \left( {3x + \pi } \right) = - 1\)
2. Phương pháp giải
Sử dụng các kết quả sau:
3. Lời giải chi tiết
a) Ta có \(\sin \left( { - \frac{\pi }{6}} \right) = - \frac{1}{2}\), phương trình trở thành:
\(\sin \left( {2x - \frac{\pi }{6}} \right) = \sin \left( { - \frac{\pi }{6}} \right) \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{6} = - \frac{\pi }{6} + k2\pi \\2x - \frac{\pi }{6} = \pi + \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = k2\pi \\2x = \frac{{4\pi }}{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \frac{{2\pi }}{3} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
b) Ta có \(\sin \frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\), phương trình trở thành:
\(\sin \left( {\frac{x}{3} + \frac{\pi }{2}} \right) = \sin \frac{\pi }{3} \Leftrightarrow \left[ \begin{array}{l} + \frac{\pi }{2} = \frac{\pi }{3} + k2\pi \\\frac{x}{3} + \frac{\pi }{2} = \pi - \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\frac{x}{3} = - \frac{\pi }{6} + k2\pi \\\frac{x}{3} = \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{2} + k6\pi \\x = \frac{\pi }{2} + k6\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
c) Ta có \(\cos \frac{\pi }{4} = \frac{{\sqrt 2 }}{2}\), phương trình trở thành:
\(\cos \left( {2x + \frac{\pi }{5}} \right) = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{array}{l}2x + \frac{\pi }{5} = \frac{\pi }{4} + k2\pi \\2x + \frac{\pi }{5} = - \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{{20}} + k2\pi \\2x = - \frac{{9\pi }}{{20}} + k2\pi \end{array} \right.\left[ \begin{array}{l}x = \frac{\pi }{{40}} + k\pi \\x = - \frac{{9\pi }}{{40}} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
d) \(2\cos \frac{x}{2} + \sqrt 3 = 0 \Leftrightarrow \cos \frac{x}{2} = - \frac{{\sqrt 3 }}{2}\)
Ta có \(\cos \frac{{5\pi }}{6} = - \frac{{\sqrt 3 }}{2}\), phương trình trở thành:
\(\cos \frac{x}{2} = \cos \frac{{5\pi }}{6} \Leftrightarrow \left[ \begin{array}{l}\frac{x}{2} = \frac{{5\pi }}{6} + k2\pi \\\frac{x}{2} = - \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\pi }}{3} + k4\pi \\x = - \frac{{5\pi }}{3} + k4\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
e) \(\sqrt 3 \tan \left( {2x + \frac{\pi }{3}} \right) - 1 = 0 \Leftrightarrow \tan \left( {2x + \frac{\pi }{3}} \right) = \frac{1}{{\sqrt 3 }}\)
Ta có \(\tan \frac{\pi }{6} = \frac{1}{{\sqrt 3 }}\), phương trình trở thành:
\(\tan \left( {2x + \frac{\pi }{3}} \right) = \tan \frac{\pi }{6} \Leftrightarrow 2x + \frac{\pi }{3} = \frac{\pi }{6} + k\pi \Leftrightarrow 2x = - \frac{\pi }{6} + k\pi \Leftrightarrow x = - \frac{\pi }{2} + k\frac{\pi }{2}\left( {k \in \mathbb{Z}} \right)\)
f) Ta có \(\cot \left( { - \frac{\pi }{4}} \right) = - 1\), phương trình trở thành:
\(\cot \left( {3x + \pi } \right) = \cot \frac{{ - \pi }}{4} \Leftrightarrow 3x + \pi = \frac{{ - \pi }}{4} + k\pi \Leftrightarrow 3x = \frac{{ - \pi }}{4} + k\pi \Leftrightarrow x = \frac{{ - \pi }}{{12}} + k\frac{\pi }{3}\left( {k \in \mathbb{Z}} \right)\)
Chủ đề 2. Sóng
HÌNH HỌC- TOÁN 11 NÂNG CAO
Chủ đề 5. Một số cuộc cải cách trong lịch sử Việt Nam (trước năm 1858)
Tải 10 đề kiểm tra 15 phút - Chương VI - Hóa học 11
Phần một: Giáo dục kinh tế
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11