Giải Bài 72 trang 90 sách bài tập toán 7 - Cánh diều

Đề bài

Chứng minh: Nếu một tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân.

 

 

Phương pháp giải - Xem chi tiết

Giả sử tam giác ABC có hai đường trung tuyến BM và CN bằng nhau chứng minh tam giác ABC cân tại A.

 

 

Lời giải chi tiết

 

Tam giác ABC có hai trung tuyến BM và CN bằng nhau.

Gọi G là giao điểm của BM và CN.

Theo tính chất trọng tâm tam giác có: \(BG = \frac{2}{3}BM\)và \(CG = \frac{2}{3}CN\).

Vì BM = CN nên BG = CG.

Suy ra tam giác BGC cân tại G.

Do đó \(\widehat {GBC} = \widehat {GCB}\) (hai góc ở đáy).

Xét ∆MBC và ∆NCB có:

BC là cạnh chung,

\(\widehat {MBC} = \widehat {NCB}\) (do \(\widehat {GBC} = \widehat {GCB}\))

MB = NC (giả thiết)

Do đó ∆MBC = ∆NCB (c.g.c)

Suy ra \(\widehat {MCB} = \widehat {NBC}\) (hai góc tương ứng).

Khi đó tam giác ABC cân tại A.

Vậy nếu một tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved