1. Nội dung câu hỏi
Cho tứ diện \(ABCD\) có \(AC = BC,AD = BD\). Gọi \(M\) là trung điểm của \(AB\). Chứng minh rằng \(\left( {CDM} \right) \bot \left( {ABC} \right)\) và \(\left( {CDM} \right) \bot \left( {ABD} \right)\).
2. Phương pháp giải
Để chứng minh hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) vuông góc với nhau ta có thể dùng một trong các cách sau:
Chứng minh trong mặt phẳng này có một đường thẳng vuông góc với mặt phẳng kia. \(\left\{ \begin{array}{l}a \subset \left( \alpha \right)\\a \bot \left( \beta \right)\end{array} \right. \Rightarrow \left( \alpha \right) \bot \left( \beta \right)\).
+ Áp dụng tính chất trung tuyến của tam giác cân.
3. Lời giải chi tiết
Vì \(M\) là trung điểm của \(AB\) nên \(AB \bot CM\), \(AB \bot DM\), suy ra \(AB \bot \left( {CDM} \right)\).
Vì hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {ABD} \right)\) đều chứa đường thẳng \(AB\) nên \(\left( {ABC} \right) \bot \left( {CDM} \right),\left( {ABD} \right) \bot \left( {CDM} \right)\).
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Sinh học lớp 11
Chủ đề 1: Cân bằng hóa học
Unit 8: Cties
Thơ duyên - Xuân Diệu
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Hóa học lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11