SBT Toán 11 - Kết nối tri thức với cuộc sống tập 2

Câu hỏi 7.20 - Mục Bài tập trang 34

1. Nội dung câu hỏi

Cho tứ diện \(ABCD\) có \(AC = BC,AD = BD\). Gọi \(M\) là trung điểm của \(AB\). Chứng minh rằng \(\left( {CDM} \right) \bot \left( {ABC} \right)\) và \(\left( {CDM} \right) \bot \left( {ABD} \right)\).


2. Phương pháp giải

Để chứng minh hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) vuông góc với nhau ta có thể dùng một trong các cách sau:

Chứng minh trong mặt phẳng này có một đường thẳng vuông góc với mặt phẳng kia.   \(\left\{ \begin{array}{l}a \subset \left( \alpha  \right)\\a \bot \left( \beta  \right)\end{array} \right. \Rightarrow \left( \alpha  \right) \bot \left( \beta  \right)\).

+ Áp dụng tính chất trung tuyến của tam giác cân.

 

3. Lời giải chi tiết 

Vì \(M\) là trung điểm của \(AB\) nên \(AB \bot CM\), \(AB \bot DM\), suy ra \(AB \bot \left( {CDM} \right)\).

Vì hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {ABD} \right)\) đều chứa đường thẳng \(AB\) nên \(\left( {ABC} \right) \bot \left( {CDM} \right),\left( {ABD} \right) \bot \left( {CDM} \right)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved