SBT Toán 11 - Kết nối tri thức với cuộc sống tập 2

Câu hỏi 7.22 - Mục Bài tập trang 34

1. Nội dung câu hỏi

Cho hình chóp đều \(S.ABCD\) có tất cả các cạnh bằng \(a\). Tính côsin góc giữa hai mặt phẳng sau:

a) Mặt phẳng \(\left( {SAB} \right)\) và mặt phẳng \(\left( {ABCD} \right)\);

b) Mặt phẳng \(\left( {SAB} \right)\) và mặt phẳng \(\left( {SBC} \right)\).


2. Phương pháp giải

Để tính góc giữa hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) ta có thể thực hiện cách sau:

Tìm hai đường thẳng \(a,b\) lần lượt vuông góc với hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\).

Khi đó góc giữa hai đường thẳng \(a,b\) chính là góc giữa hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\).

\(\left\{ \begin{array}{l}a \bot \left( \alpha  \right)\\b \bot \left( \beta  \right)\end{array} \right. \Rightarrow \widehat {\left( {\left( \alpha  \right),\left( \beta  \right)} \right)} = \widehat {\left( {a,b} \right)}\).

Dựa vào tỉ số lượng giác trong tam giác vuông để tìm góc.

Áp dụng định lí côsin trong tam giác.

 

3. Lời giải chi tiết 

a) Gọi \(O\) là giao điểm của \(AC\) và \(BD\).

Khi đó \(SO \bot \left( {ABCD} \right)\) nên \(SO \bot AB\),

Kẻ \(OH \bot AB\) tại \(H\) thì \(AB \bot \left( {SOH} \right)\), suy ra \(AB \bot SH\).

 Do đó, góc giữa hai mặt phằng \(\left( {SAB} \right)\) và \(\left( {ABCD} \right)\) bằng góc giữa hai đường thẳng \(SH\) vả \(HO\), mà \(\left( {SH,HO} \right) = \widehat {SHO}\) nên góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {ABCD} \right)\) bằng \(\widehat {SHO}\).

Ta tính được \({\rm{OH}} = \frac{a}{2},{\rm{SH}} = \frac{{a\sqrt 3 }}{2}\), suy ra \({\rm{cos}}\widehat {SHO} = \frac{{{\rm{OH}}}}{{{\rm{SH}}}} = \frac{{\sqrt 3 }}{3}\).

b) Gọi \(K\) là trung điểm của \(SB\). Khi đó \(AK \bot SB,CK \bot SB\), suy ra góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SBC} \right)\) bằng góc giữa hai đường thẳng \(AK\) và \(CK\).

Ta có \(AK = CK = \frac{{a\sqrt 3 }}{2},AC = a\sqrt 2 \).

Áp dụng định lí côsin trong tam giác ACK, ta có:

\({\rm{cos}}\widehat {AKC} = \frac{{A{K^2} + C{K^2} - A{C^2}}}{{2 \cdot AK \cdot CK}} = \frac{{ - 1}}{3}\), suy ra \({\rm{cos}}\left( {AK,CK} \right) =  - {\rm{cos}}\widehat {AKC} = \frac{1}{3}\).

Vậy côsin góc giữa hai mặt phả̉ng \(\left( {SAB} \right)\) và \(\left( {SBC} \right)\) bằng \(\frac{1}{3}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved