Đề bài
Cho đường tròn \(\left( C \right)\), đường thẳng \(\Delta \) có phương trình lần lượt là:
\({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 2,x + y + 2 = 0\)
a) Chứng minh \(\Delta \) là một tiếp tuyến của đường tròn \(\left( C \right)\)
b) Viết phương trình tiếp tuyến d của \(\left( C \right)\), biết rằng d song song với đường thẳng \(\Delta \)
Phương pháp giải - Xem chi tiết
+ Đường thẳng d là tiếp tuyến của đường tròn \(C\left( {I,R} \right)\) khi \(d\left( {I,d} \right) = R\)
Lời giải chi tiết
a) \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 2\) có \(I\left( {1; - 1} \right),R = \sqrt 2 \)
Tính \(d\left( {I,\Delta } \right) = \frac{{\left| {1 - 1 + 2} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \frac{2}{{\sqrt 2 }} = \sqrt 2 = R\)
Nên d là tiếp tuyến của đường tròn \(C\left( {I,R} \right)\)
b)
+ d song song với đường thẳng \(\Delta \) \(\Rightarrow \) \(d:x + y + c = 0\left( {c \ne 2} \right)\)
+ d là tiếp tuyến của \(C\left( {I,R} \right) \Rightarrow d\left( {I,d} \right) = \frac{{\left| {1 - 1 + c} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \frac{{\left| c \right|}}{{\sqrt 2 }} = \sqrt 2 \Rightarrow \left| c \right| = 2 \Rightarrow c = - 2\)
\( \Rightarrow d:x + y - 2 = 0\)
Chuyên đề 3. Công nghệ vi sinh vật trong xử lí môi trường
Bảo kính cảnh giới
Chương 5. Năng lượng hóa học
Chuyên đề 2. Công nghệ enzyme và ứng dụng
Phần 2. Sinh học vi sinh vật và virus
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10