1. Nội dung câu hỏi
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(A\), góc \(ABC\) bằng \({60^ \circ }\), biết tam giác \(SBC\) đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng \(\left( {ABC} \right)\). Tính theo a khoảng cách:
a) Từ điểm \(S\) đến mặt phẳng \(\left( {ABC} \right)\).
b) Từ điểm \(B\) đến mặt phẳng \(\left( {SAC} \right)\).
c) Giữa hai đường thẳng \(AB\) và \(SC\).
2. Phương pháp giải
a) Tính khoảng cách từ điểm \(S\) đến mặt phẳng \(\left( {ABC} \right)\).
Bước 1: Kẻ \(SH\) vuông góc với \(BC\) tại \(H\)
Do \(\left( {SBC} \right) \bot \left( {ABC} \right) \Rightarrow SH \bot \left( {ABC} \right)\)
\( \Rightarrow d\left( {S,\left( {ABC} \right)} \right) = SH\)
Bước 2: Tính \(SH\)
b) Tính khoảng cách từ điểm \(B\) đến mặt phẳng \(\left( {SAC} \right)\).
Bước 1: Tính khoảng cách từ \(H\) đến mặt phẳng \(\left( {SAC} \right)\).
Bước 2: Nhận xét \(H\) là trung điểm của \(BC\) nên \(d\left( {B,\left( {SAC} \right)} \right) = 2d\left( {H,\left( {SAC} \right)} \right)\)c) Tính khoảng cách giữa hai đường thẳng \(AB\) và \(SC\).
Bước 1: Dựng hình bình hành \(ABMC\), chứng minh được \(ABMC\) là hình chữ nhật.
Khi đó \(AB//\left( {SCM} \right)\) và mặt phẳng \(\left( {SMC} \right)\) chứa \(SC\) nên
\(d\left( {AB,SC} \right) = d\left( {AB,\left( {SCM} \right)} \right) = d\left( {B,\left( {SCM} \right)} \right) = 2d\left( {H,\left( {SCM} \right)} \right){\rm{.\;}}\)
Bước 2: Tính \(\left( {H,\left( {SCM} \right)} \right) \Rightarrow \)\(d\left( {AB,SC} \right) = d\left( {AB,\left( {SCM} \right)} \right) = 2d\left( {H,\left( {SCM} \right)} \right){\rm{.\;}}\)
3. Lời giải chi tiết
a) Kẻ \(SH\) vuông góc với \(BC\) tại \(H\) thì \(SH \bot \left( {ABC} \right)\), suy ra \(d\left( {S,\left( {ABC} \right)} \right) = SH = \frac{{a\sqrt 3 }}{2}\)
b) Kẻ HK vuông góc với \(AC\) tại \(K,HQ\) vuông góc với \(SK\) tại \(Q\) thì \(d\left( {H,\left( {SAC} \right)} \right) = HQ\).
Ta có: \(AB = \frac{a}{2},HK = \frac{a}{4}\) và tam giác \(SHK\) vuông tại \(H\), đường cao \(HQ\) nên \(HQ = \frac{{SH \cdot HK}}{{SK}} = \frac{{a\sqrt {39} }}{{26}}\).
Lại có \(H\) là trung điểm của \(BC\) nên \(d\left( {B,\left( {SAC} \right)} \right) = 2d\left( {H,\left( {SAC} \right)} \right) = \frac{{a\sqrt {39} }}{{13}}\).
c) Dựng hình bình hành \(ABMC\), chứng minh được \(ABMC\) là hình chữ nhật.
Khi đó \(AB//\left( {SCM} \right)\) và mặt phẳng \(\left( {SMC} \right)\) chứa \(SC\) nên
\(d\left( {AB,SC} \right) = d\left( {AB,\left( {SCM} \right)} \right) = d\left( {B,\left( {SCM} \right)} \right) = 2d\left( {H,\left( {SCM} \right)} \right){\rm{.\;}}\)
Kẻ \(HN\) vuông góc với \(CM\) tại \(N,HE\) vuông góc với \(SN\) tại \(N\) thì \(HE \bot \left( {SCM} \right)\), suy ra \(d\left( {H,\left( {SCM} \right)} \right) = HE\).
Ta có: \(HN = \frac{{BM}}{2} = \frac{{a\sqrt 3 }}{4}\), tam giác SHN vuông tại \(H\), đường cao \(HE\) nên \(HE = \frac{{SH \cdot HN}}{{SN}} = \frac{{a\sqrt {15} }}{{10}}\).
Vậy \(d\left( {AB,SC} \right) = \frac{{a\sqrt {15} }}{5}\).
Chủ đề 4. Chiến tranh bảo vệ Tổ quốc và chiến tranh giải phóng dân tộc trong lịch sử Việt Nam
Unit 1: Health & Healthy lifestyle
SBT Ngữ văn 11 - Cánh Diều tập 2
Chuyên đề 2. Một số bệnh dịch ở người và cách phòng, chống
Chương 5. Mối quan hệ giữa các quá trình sinh lí trong cơ thể sinh vật và một số ngành nghề liên quan đến sinh học cơ thể
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11