1. Nội dung câu hỏi
Giải phương trình:
a) \(\sin \left( {2x + \frac{\pi }{3}} \right) = \sin \left( {3x - \frac{\pi }{6}} \right)\)
b) \(\cos \left( {x + \frac{\pi }{4}} \right) = \cos \left( {\frac{\pi }{4} - 2x} \right)\)
c) \({\cos ^2}\left( {\frac{x}{2} + \frac{\pi }{6}} \right) = {\cos ^2}\left( {\frac{{3x}}{2} + \frac{\pi }{4}} \right)\)
d) \(\cot 3x = \tan \frac{{2\pi }}{7}\)
2. Phương pháp giải
a) Sử dụng kết quả \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
b) Sử dụng kết quả \(\cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
c) Sử dụng công thức \({\cos ^2}x = \frac{{1 + \cos 2x}}{2}\)
Sử dụng kết quả \(\cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
d) Sử dụng công thức \(\tan x = \cot \left( {\frac{\pi }{2} - x} \right)\) và kết quả \(\cot x = \cot \alpha \Leftrightarrow x = \alpha + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)
3. Lời giải chi tiết
a) Ta có:
\(\sin \left( {2x + \frac{\pi }{3}} \right) = \sin \left( {3x - \frac{\pi }{6}} \right) \Leftrightarrow \left[ \begin{array}{l}2x + \frac{\pi }{3} = 3x - \frac{\pi }{6} + k2\pi \\2x + \frac{\pi }{3} = \pi - 3x + \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - x = - \frac{\pi }{2} + k2\pi \\5x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + k2\pi \\x = \frac{\pi }{6} + k\frac{{2\pi }}{5}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
b) Ta có:
\(\cos \left( {x + \frac{\pi }{4}} \right) = \cos \left( {\frac{\pi }{4} - 2x} \right) \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4} = \frac{\pi }{4} - 2x + k2\pi \\x + \frac{\pi }{4} = 2x - \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3x = k2\pi \\ - x = - \frac{\pi }{2} + k2\pi \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = k\frac{{2\pi }}{3}\\x = \frac{\pi }{2} + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
c) Ta có:
\({\cos ^2}\left( {\frac{x}{2} + \frac{\pi }{6}} \right) = \frac{{1 + \cos \left[ {2\left( {\frac{x}{2} + \frac{\pi }{6}} \right)} \right]}}{2} = \frac{{1 + \cos \left( {x + \frac{\pi }{3}} \right)}}{2}\);
\({\cos ^2}\left( {\frac{{3x}}{2} + \frac{\pi }{4}} \right) = \frac{{1 + \cos \left[ {2\left( {\frac{{3x}}{2} + \frac{\pi }{4}} \right)} \right]}}{2} = \frac{{1 + \cos \left( {3x + \frac{\pi }{2}} \right)}}{2}\)
Phương trình trở thành:
\(\frac{{1 + \cos \left( {x + \frac{\pi }{3}} \right)}}{2} = \frac{{1 + \cos \left( {3x + \frac{\pi }{2}} \right)}}{2} \Leftrightarrow \cos \left( {x + \frac{\pi }{3}} \right) = \cos \left( {3x + \frac{\pi }{2}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{3} = 3x + \frac{\pi }{2} + k2\pi \\x + \frac{\pi }{3} = - 3x - \frac{\pi }{2} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 2x = \frac{\pi }{6} + k2\pi \\4x = - \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{{12}} + k\pi \\x = - \frac{{5\pi }}{{24}} + k\frac{\pi }{2}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
d) Ta có \(\tan \frac{{2\pi }}{7} = \cot \left( {\frac{\pi }{2} - \frac{{2\pi }}{7}} \right) = \cot \frac{{3\pi }}{{14}}\).
Phương trình trở thành \(\cot 3x = \cot \frac{{3\pi }}{{14}} \Leftrightarrow 3x = \frac{{3\pi }}{{14}} + k\pi \Leftrightarrow x = \frac{\pi }{{14}} + k\frac{\pi }{3}\)\(\left( {k \in \mathbb{Z}} \right)\)
Chương 4: Hydrocarbon
Chương IV. Dòng điện không đổi
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
Chủ đề 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam (trước năm 1858)
Unit 9: Education in the Future
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11