Đề bài
Viết phương trình chính tắc của parabol \(\left( P \right)\), biết rằng \(\left( P \right)\) có đường chuẩn là đường thẳng \(\Delta :x + 4 = 0\). Tìm tọa độ điểm M thuộc \(\left( P \right)\) sao cho khoảng cách từ M đến tiêu điểm của \(\left( P \right)\) bằng 5
Phương pháp giải - Xem chi tiết
+ Parabol \(\left( P \right)\) có dạng \({y^2} = 2px\) với \(p > 0\) có tiêu điểm \(F\left( {\frac{p}{2};0} \right)\), phương trình đường chuẩn \(\Delta :x = - \frac{p}{2}\)
+ Dựa vào khoảng cách từ M đến tiêu điểm của \(\left( P \right)\) bằng 5
Lời giải chi tiết
+ Phương trình chính tắc của \(\left( P \right)\) có dạng \({y^2} = 2px\), trong đó \(p > 0\)
+ \(\left( P \right)\) có đường chuẩn \(\Delta :x + 4 = 0 \Rightarrow x = - 4 \Rightarrow - \frac{p}{2} = - 4 \Rightarrow p = 8\)
\( \Rightarrow \) Phương trình chính tắc của \(\left( P \right)\) là \({y^2} = 16x\)
+ Gọi \(M\left( {{x_0};{y_0}} \right)\). Có \(M \in \left( P \right)\) nên ta có:
\(d\left( {M,\Delta } \right) = MF = 5 = \frac{{\left| {{x^0} + 4} \right|}}{{\sqrt {{1^2} + 0} }} \Rightarrow \left| {{x^0} + 4} \right| = 5 \Rightarrow \left[ \begin{array}{l}{x_0} = 1\\{x_0} = - 9\end{array} \right.\)
+ \({x_0} = - 9 \Rightarrow y_0^2 = 16\left( { - 9} \right) = - 144\) à Phương trình vô nghiệm
+ \({x_0} = 1 \Rightarrow y_0^2 = 16.1 = 16 \Rightarrow \left[ \begin{array}{l}{y_0} = 4\\{y_0} = - 4\end{array} \right.\)
Vậy \(M\left( {1;4} \right)\) hoặc \(M\left( {1; - 4} \right)\)
CHƯƠNG III. LIÊN KẾT HÓA HỌC
Chuyên đề 3. Đọc, viết và giới thiệu một tập thơ, tập truyện ngắn hoặc một tiểu thuyết
Phần 2. Sinh học vi sinh vật và virus
Unit 7: Inventions
Đề thi học kì 1
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10