1. Nội dung câu hỏi
Một chất điểm chuyển động đều theo chiều ngược chiều kim đồng hồ trên đường tròn bán kính 5 cm. Khoảng cách \(h\) (cm) từ chất điểm đến trục hoành được tính theo công thức \(h = \left| y \right|\), trong đó \(y = a\sin \left( {\frac{\pi }{5}t} \right)\), với \(t\) là thời gian chuyển động của chất điểm tính bằng giây \(\left( {t \ge 0} \right)\) và chất điểm bắt đầu chuyển động từ vị trí \(A\) (Xem hình dưới)
a) Chất điểm chuyển động một vòng hết bao nhiêu giây?
b) Tìm giá trị của \(a\).
c) Tìm thời điểm sao cho chất điểm ở vị trí có \(h = 2,5\) cm và nằm phía dưới trục hoành trong một vòng quay đầu tiên.
2. Phương pháp giải
a) Thời gian chất điểm chuyển động một vòng là chu kì của chất điểm đó.
Xét \(h = 0 \Leftrightarrow y = 0 \Leftrightarrow \sin \left( {\frac{\pi }{5}t} \right) = 0 \Leftrightarrow t = 5k\)\(\left( {k \in \mathbb{Z}} \right)\)
Nhận thấy \(k = 2\), ta thấy chất điểm và quay về vị trí\(A\). Do vậy, thời gian chất điểm chuyển động một vòng là 10 giây.
b) Do thời gian chất điểm chuyển động một vòng là 10 giây, nên sau 2,5 giây chất điểm chuyển động được một phần tư vòng tròn theo chiều dương. Như vậy tại \(t = 2,5\) ta có: \(a\sin \left( {\frac{\pi }{5}.\frac{5}{2}} \right) = 5 \Leftrightarrow a = 5\).
c) Yêu cầu đề bài tương đương với việc tìm \(t\) để \(y = 5\sin \left( {\frac{\pi }{5}t} \right) = - 2,5\).
Giải phương trình ẩn \(t\) và kết luận.
3. Lời giải chi tiết
a) Thời gian chất điểm chuyển động một vòng là chu kì của chất điểm đó.
Xét \(t = 0 \Rightarrow h = 0\), ta thấy chất điểm ở vị trí \(A\). Ta cần tìm thời gian gần nhất kể từ thời điểm \(t = 0\) (giây), chất điểm lại quay về vị trí \(A\).
Xét \(h = 0 \Leftrightarrow y = 0 \Leftrightarrow \sin \left( {\frac{\pi }{5}t} \right) = 0 \Leftrightarrow t = 5k\)\(\left( {k \in \mathbb{Z}} \right)\)
Với \(k = 1\), ta thấy chất điểm chuyển động được nửa vòng tròn.
Với \(k = 2\), ta thấy chất điểm chuyển động được một vòng tròn, và quay về vị trí\(A\).
Do vậy, thời gian chất điểm chuyển động một vòng là 10 giây.
b) Do thời gian chất điểm chuyển động một vòng là 10 giây, nên sau 2,5 giây chất điểm chuyển động được một phần tư vòng tròn theo chiều dương. Như vậy tại \(t = 2,5\) ta có: \(y = \left| y \right| = h = 5 \Leftrightarrow a\sin \left( {\frac{\pi }{5}.\frac{5}{2}} \right) = 5 \Leftrightarrow a\sin \left( {\frac{\pi }{2}} \right) = 5 \Leftrightarrow a = 5\).
\( \Rightarrow y = 5\sin \left( {\frac{\pi }{5}t} \right)\)
c) Ta cần tìm \(t\) để \(h = 2,5\)cm và ở dưới trục hoành nên \(y = - 2,5\).
\(5\sin \left( {\frac{\pi }{5}t} \right) = - 2,5 \Leftrightarrow \sin \left( {\frac{\pi }{5}t} \right) = - \frac{1}{2}\)
Ta thấy \(\sin \frac{{ - \pi }}{6} = - \frac{1}{2}\), phương trình ở trên tương đương với
\(\sin \left( {\frac{\pi }{5}t} \right) = \sin \frac{{ - \pi }}{6} \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{5}t = - \frac{\pi }{6} + k2\pi \\\frac{\pi }{5}t = \pi + \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = \frac{{ - 5 + 60k}}{6}\\t = \frac{{35 + 60k}}{6}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
Vì ta chỉ xét vòng quay đầu tiên, nên \(0 \le t \le 10\). Do đó \(t = \frac{{35}}{6}\), \(t = \frac{{55}}{6}\)
Vậy tại thời điểm \(t = \frac{{35}}{6}\) giây, \(t = \frac{{55}}{6}\) giây, chất điểm cách trục hoành 2,5 cm và nằm ở dưới trục hoành.
Chương 1. Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
Unit 7: Education for school-leavers
CHƯƠNG 1. CHUYỂN HÓA VẬT CHẤT VÀ NĂNG LƯỢNG
Test Yourself 4
CHƯƠNG V. CẢM ỨNG ĐIỆN TỪ
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11