1. Nội dung câu hỏi
Cho tứ diện đều ABCD, góc giữa hai đường thẳng AB và CD bằng
A. \({30^0}\).
B. \({45^0}\).
C. \({60^0}\).
D. \({90^0}\).
2. Phương pháp giải
Sử dụng tích vô hướng của hai vectơ.
3. Lời giải chi tiết
Đặt \(AB = AC = AD = a\)
\(\overrightarrow {AB} .\overrightarrow {CD} = \overrightarrow {AB} .\left( {\overrightarrow {AD} - \overrightarrow {AC} } \right) = \overrightarrow {AB} .\overrightarrow {AD} - \overrightarrow {AB} .\overrightarrow {AC} = a.a\cos {60^ \circ } - a.a\cos {60^ \circ } = 0\)
\( \Rightarrow \overrightarrow {AB} \bot \overrightarrow {CD} \Rightarrow \left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right) = {90^ \circ } \Rightarrow \left( {AB,CD} \right) = {90^ \circ }\).
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Toán lớp 11
Phần hai: Giáo dục pháp luật
Phần 2. Địa lí khu vực và quốc gia
Unit 8: Conservation
Chuyên đề 3: Danh nhân trong lịch sử Việt Nam
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11