1. Nội dung câu hỏi
Cho hình chóp \(S.ABCD\)có tất cả các cạnh đều bằng a, gọi \(O\) là giao điểm của \(AC\)và\(BD\). Khoản cách từ điểm \(O\) đến mặt phẳng \(\left( {SBC} \right)\) bằng
A. \(\frac{{a\sqrt 6 }}{6}\).
B. \(\frac{{a\sqrt 3 }}{3}\).
C. \(\frac{{a\sqrt 3 }}{2}\).
D. \(\frac{{a\sqrt 6 }}{3}\).
2. Phương pháp giải
Tìm hình chiếu vuông góc của \(O\) lên \(\left( {SBC} \right)\) là điểm \(H\).Tính \(OH\) theo công thức đường cao của tam giác vuông.
3. Lời giải chi tiết
Tính khoảng cách từ \(O\) tới \(mp\left( {SBC} \right)\):
Gọi \(E\) là trung điểm của \(BC\).
Theo giả thiết \(SO \bot \left( {ABCD} \right) \supset BC\).
\( \Rightarrow \) \(\left\{ \begin{array}{l}BC \bot SO \subset \left( {SOE} \right)\\BC \bot OE \subset \left( {SOE} \right)\\OE \cap SO = O\end{array} \right.\) \( \Rightarrow \) \(BC \bot \left( {SOE} \right)\) mà \(BC \subset \left( {SBC} \right)\)\( \Rightarrow \) \(\left( {SBC} \right) \bot \left( {SOE} \right)\).
Gọi \(H\) là hình chiếu vuông góc của \(O\) lên \(SE\)\( \Rightarrow OH \bot SE = \left( {SBC} \right) \cap \left( {SOE} \right)\), suy ra \(OH \bot \left( {SBC} \right)\) nên \(d\left( {O,\left( {SBC} \right)} \right) = OH\).
Ta có \(SO = \sqrt {S{C^2} - O{C^2}} = \sqrt {{a^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}} = \frac{{a\sqrt 2 }}{2}\).
Trong \(\Delta SOE\) vuông tại \(O\), ta có:
\(\frac{1}{{O{H^2}}} = \frac{1}{{O{E^2}}} + \frac{1}{{O{S^2}}} = \frac{1}{{{{\left( {\frac{a}{2}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}}} = \frac{6}{{{a^2}}}\) \( \Rightarrow \) \(OH = \frac{a}{{\sqrt 6 }}\)
\( \Rightarrow \)\(d\left( {O,\left( {SCD} \right)} \right) = OH = \frac{a}{{\sqrt 6 }} = \frac{{a\sqrt 6 }}{6}\).
Bài 15: Dẫn xuất halogen
Unit 4: Preserving World Heritage
Chương 2. Nitơ - Photpho
Bài 5. Kiến thức phổ thông về phòng không nhân dân
Unit 6: Transitions
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11