Đề bài
Cho ba điểm phân biệt I, A, B và số thực k ≠ 1 thoả mãn \(\overrightarrow {IA} = k\overrightarrow {IB} \). Chứng minh rằng với O là điểm bất kì ta có:
\(\overrightarrow {OI} = \left( {\frac{1}{{1 - k}}} \right)\overrightarrow {OA} - \left( {\frac{k}{{1 - k}}} \right)\overrightarrow {OB} \) (*)
Phương pháp giải - Xem chi tiết
Tách các vectơ \(\overrightarrow {OA} ,\overrightarrow {OB} \) sao cho xuất hiện vectơ \(\overrightarrow {OI} \) và kết hợp giả thiết để biến đổi vế phải (*)
Lời giải chi tiết
Theo giả thiết, \(\overrightarrow {IA} = k\overrightarrow {IB} \)
Xét vế phải (*) ta có:
VT = \(\left( {\frac{1}{{1 - k}}} \right)\overrightarrow {OA} - \left( {\frac{k}{{1 - k}}} \right)\overrightarrow {OB} = \left( {\frac{1}{{1 - k}}} \right)\left( {\overrightarrow {OI} + \overrightarrow {IA} } \right) - \left( {\frac{k}{{1 - k}}} \right)\left( {\overrightarrow {OI} + \overrightarrow {IB} } \right)\)
\( = \left( {\frac{1}{{1 - k}}} \right)\overrightarrow {OI} + \left( {\frac{1}{{1 - k}}} \right)\overrightarrow {IA} - \left( {\frac{k}{{1 - k}}} \right)\overrightarrow {OI} - \left( {\frac{k}{{1 - k}}} \right)\overrightarrow {IB} \) \( = \left( {\frac{1}{{1 - k}} - \frac{k}{{1 - k}}} \right)\overrightarrow {OI} + \left( {\frac{1}{{1 - k}}} \right).k\overrightarrow {IB} - \left( {\frac{k}{{1 - k}}} \right)\overrightarrow {IB} \)
\( = \overrightarrow {OI} + \left( {\frac{1}{{1 - k}}} \right).k\overrightarrow {IB} - \left( {\frac{k}{{1 - k}}} \right)\overrightarrow {IB} = \overrightarrow {OI} + \left( {\frac{k}{{1 - k}} - \frac{k}{{1 - k}}} \right)\overrightarrow {IB} \) \( = \overrightarrow {OI} \) (ĐPCM)
Buổi học cuối cùng
Unit 6: Time to learn
Chương 1: Sử dụng bản đồ
Đề thi giữa kì 1
Chuyên đề 3: Ba đường conic và ứng dụng
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10