PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 2

Bài 75 trang 114 SBT toán 9 tập 2

Đề bài

Cho tam giác \(ABC\) có ba góc nhọn. Dựng điểm \(M\) nằm trong tam giác \(ABC\) sao cho \(\widehat {AMB} = \widehat {BMC} = \widehat {CMA}\)

Phương pháp giải - Xem chi tiết

* Phân tích: 

+) Giả sử đã có một hình thỏa mãn điều kiện bài toán

+) Chọn ra các yếu tố dựng được ngay (đoạn thẳng, tam giác,...)

+) Đưa việc dựng các điểm còn lại về các phép dựng hình cơ bản và các bài toán dựng hình cơ bản (Mỗi điểm thường được xác định là giao của hai đường.)

* Cách dựng: Nêu thứ tự từng bước dựng hình, đồng thời thể hiện các nét dựng trên hình vẽ.

Lời giải chi tiết

 

Phân tích: 

Giả sử \(M\) là điểm nằm trong \(∆ABC\) sao cho \(\widehat {AMB} = \widehat {BMC} = \widehat {CMA}\)

Vì \(\widehat {AMB} + \widehat {BMC} + \widehat {CMA} = {360^\circ}\)

Nên \(\widehat {AMB} = \widehat {BMC} \)\(= \widehat {CMA} = {360^\circ}:3=120^0\)

Khi đó, điểm \(M\) nhìn các cạnh \(AB, BC, AC\) của \(∆ABC\) dưới \(1\) góc bằng \(120^\circ\) 

Cách dựng:

- Dựng cung chứa góc \(120^\circ\) vẽ trên đoạn \(BC.\)

- Dựng cung chứa góc \(120^\circ\) vẽ trên đoạn \(AC.\)

- Giao điểm thứ hai ngoài \(C\) của hai cung này là điểm \(M\) phải dựng.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved