SBT Toán 11 - Kết nối tri thức với cuộc sống tập 2

Câu hỏi 7.55 - Mục Bài tập trang 43

1. Nội dung câu hỏi

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Gọi \(M,N\) lần lượt là trung điểm của các cạnh \(AB,AD\).

a) Tính theo a thể tích khối chóp cụt \(AMN.A'B'D'\).

b) Tính theo a khoảng cách giữa hai đường thẳng \(MN\) và \(A'B\).


2. Phương pháp giải

a) Tính theo a thể tích khối chóp cụt \(AMN.A'B'D'\).

Áp dụng công thức \(V = \frac{1}{3} \cdot AA' \cdot \left( {{S_{AMN}} + {S_{A'B'D'}} + \sqrt {{S_{AMN}} \cdot {S_{A'B'D'}}} } \right)\)

b) Tính theo a khoảng cách giữa hai đường thẳng \(MN\) và \(A'B\).

  • Tìm mặt phẳng chứa đường thẳng này và song song song với đường thẳng còn lại: \(MN//\left( {A'BD} \right)\)
  • \(d\left( {MN,A'B} \right) = d\left( {MN,\left( {A'BD} \right)} \right) = d\left( {M,\left( {A'BD} \right)} \right) = \frac{1}{2}d\left( {A,\left( {A'BD} \right)} \right)\)
  • Đặt \(h = d\left( {A,\left( {A'BD} \right)} \right)\) thì \(\frac{1}{{{h^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}} + \frac{1}{{A{A^{{\rm{'}}2}}}} \Rightarrow \) \(h \Rightarrow \)\(d\left( {MN,A'B} \right) = d\left( {MN,\left( {A'BD} \right)} \right) = d\left( {M,\left( {A'BD} \right)} \right) = \frac{1}{2}d\left( {A,\left( {A'BD} \right)} \right)\)

Vậy \(d\left( {MN,A'B} \right) = d\left( {M,\left( {A'BD} \right)} \right) = \frac{{a\sqrt 3 }}{6}\).

 

3. Lời giải chi tiết 

a) Ta có:

\({S_{A'B'D'}} = \frac{{{a^2}}}{2};{S_{AMN}} = \frac{{{a^2}}}{8};{S_{ABCD}} = {a^2};AA' = a\), suy ra thể tích khối chóp cụt \(AMN \cdot A'B'D'\) là:

\(V = \frac{1}{3} \cdot AA' \cdot \left( {{S_{AMN}} + {S_{A'B'D'}} + \sqrt {{S_{AMN}} \cdot {S_{A'B'D'}}} } \right)\)

\( = \frac{1}{3} \cdot a \cdot \left( {\frac{{{a^2}}}{8} + \frac{{{a^2}}}{2} + \sqrt {\frac{{{a^2}}}{8} \cdot \frac{{{a^2}}}{2}} } \right) = \frac{{7{a^3}}}{{24}}{\rm{.\;}}\) 

b) Vì \(MN//BD\) nên \(MN//\left( {A'BD} \right)\), do đó:

\(d\left( {MN,A'B} \right) = d\left( {MN,\left( {A'BD} \right)} \right) = d\left( {M,\left( {A'BD} \right)} \right).\)

Vì \(M\) là trung điểm của \(AB\) nên \(d\left( {M,\left( {A'BD} \right)} \right) = \frac{1}{2}d\left( {A,\left( {A'BD} \right)} \right)\).

Đặt \(h = d\left( {A,\left( {A'BD} \right)} \right)\) thì \(\frac{1}{{{h^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}} + \frac{1}{{A{A^{{\rm{'}}2}}}} = \frac{3}{{{a^2}}}\), suy ra \(h = \frac{{a\sqrt 3 }}{3}\).

Vậy \(d\left( {MN,A'B} \right) = d\left( {M,\left( {A'BD} \right)} \right) = \frac{{a\sqrt 3 }}{6}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved