Toán 7 tập 2 - Cánh diều

Giải bài 8 trang 120 SGK Toán 7 tập 2 - Cánh diều

Đề bài

Cho tam giác ABCO là giao điểm của ba đường trung trực. Qua các điểm A, B, C lần lượt kẻ các đường thẳng vuông góc với OA, OB, OC, hai trong ba đường đó lần lượt cắt nhau tại M, N, P (Hình 144). Chứng minh:

a) \(\Delta OMA = \Delta OMB\) và tia MO là tia phân giác của góc NMP;

b) O là giao điểm của ba đường phân giác của tam giác MNP.

 

 

Phương pháp giải - Xem chi tiết

a) Chứng minh hai tam giác bằng nhau theo trường hợp cạnh huyền – cạnh góc vuông.

b) Chứng minh dựa vào kết quả của phần a).

 

 

Lời giải chi tiết

a) O là giao điểm của ba đường trung trực của tam giác ABC nên O cách đều ba đỉnh của tam giác đó hay OA = OB = OC.

Xét hai tam giác vuông OAMOBM có:

     OA = OB;

     OM chung.

Vậy \(\Delta OAM = \Delta OBM\)(cạnh huyền – cạnh góc vuông).

Suy ra: \(\widehat {OMA} = \widehat {BMO}\) ( 2 góc tương ứng).

Vậy MO là tia phân giác của góc BMA hay MO là tia phân giác của góc NMP (ba điểm M, A, P thẳng hàng và ba điểm M, B, N thẳng hàng).

b) MO là tia phân giác của góc NMP.

Tương tự ta có:

     NO là tia phân giác của góc MNP.

     PO là tia phân giác của góc MPN.

Vậy O là giao điểm của ba đường phân giác MO, NO, PO của tam giác MNP

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved