PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 1

Bài 8 trang 6 SBT toán 9 tập 1

Đề bài

Chứng minh:

\(\eqalign{
& \sqrt {{1^3} + {2^3}} = 1 + 2; \cr 
& \sqrt {{1^3} + {2^3} + {3^3}} = 1 + 2 + 3; \cr 
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3}} = 1 + 2 + 3 + 4. \cr} \)

Viết tiếp một số đẳng thức tương tự.

Phương pháp giải - Xem chi tiết

Tính giá trị của vế trái và giá trị vế phải của mỗi đẳng thức. So sánh hai giá trị để chứng mình đẳng thức đúng.

Từ các đẳng thức đã chứng minh ta tìm quy luật để suy ra đẳng thức tương tự.

Lời giải chi tiết

+ Ta có : \(\sqrt {{1^3} + {2^3}}  = \sqrt {1 + 8}  = \sqrt 9  = 3\)

Và \(1 + 2 = 3\) 

Vậy \(\sqrt {{1^3} + {2^3}}  = 1 + 2\)

+ Ta có : 

\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3}} = \sqrt {1 + 8 + 27} \cr 
& = \sqrt {36} = 6 \cr} \)

Vậy \(\sqrt {{1^3} + {2^3} + {3^3}}  = 1 + 2 + 3\)

+ Ta có : 

\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3}} \cr 
& = \sqrt {1 + 8 + 27 + 64} \cr 
& = \sqrt {100} = 10 \cr} \)

Và \(1 + 2 + 3 + 4 = 10\)

Vậy 

\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3}} \cr 
& = 1 + 2 + 3 + 4 \cr} \)

Một số đẳng thức tương tự:

\(\sqrt {{1^3} + {2^3} + {3^3} + {4^3} + {5^3}} \)\(= 1 + 2 + 3 + 4 + 5 \)

\(\sqrt {{1^3} + {2^3} + {3^3} + {4^3} + {5^3} +{6^3}}\)

\(= 1 + 2 + 3 + 4 + 5 +6 \). 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved