Giải Bài 8 trang 66 sách bài tập toán 7 - Chân trời sáng tạo

Đề bài

Cho tam giác ABC cân tại A và cho \(\widehat {{A^{}}} = {124^o}\). Vẽ đường cao BH và phân giác BK ứng với đỉnh B của tam giác ABC. Tính số đo các góc của tam giác BHK.

 

 

Phương pháp giải - Xem chi tiết

- Tính \(\widehat {HKB} = {42^o}\)

- Xét tam giác vuông BHK, \(\widehat {HBK} = {48^o}\)

 

 

Lời giải chi tiết

Trong tam giác ABC ta có \(\widehat B = \widehat C = \frac{{{{180}^o} - \widehat {{A^{}}}}}{2} = \frac{{{{180}^o} - {{124}^o}}}{2} = {28^o}\)

Ta có: \(\widehat {HKB} = \widehat {AKB} = {180^o} - {124^o} - {14^o} = {42^o}\)

Trong tam giác vuông BHK ta có: \(\widehat {BHK} = {90^o},\widehat {HBK} = {90^o} - {42^o} = {48^o}\)

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved