1. Nội dung câu hỏi
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M,{\rm{ }}N,{\rm{ }}P\) lần lượt là trung điểm của các cạnh \(SA,{\rm{ }}SB,{\rm{ }}SC\).
a) Xác định giao điểm \(I\) của đường thẳng \(MP\) với mặt phẳng \(\left( {SBD} \right)\).
b) Xác định giao điểm \(Q\) của đường thẳng \(SD\) với mặt phẳng \(\left( {MNP} \right)\).
2. Phương pháp giải
Để xác định giao điểm của mặt phẳng với một đường thẳng cho trước, ta cần chọn một đường thẳng khác nằm trong mặt phẳng đã cho, rồi tìm giao điểm của 2 đường thẳng đó.
3. Lời giải chi tiết
a) Trên mặt phẳng \(\left( {ABCD} \right)\), gọi \(\left\{ O \right\} = AC \cap BD\).
Trên mặt phẳng \(\left( {SAC} \right)\), gọi \(\left\{ I \right\} = MP \cap SO\).
Do \(SO \subset \left( {SBD} \right)\), ta suy ra \(\left\{ I \right\} = MP \cap \left( {SBD} \right)\).
Vậy \(I\) là giao điểm của \(MP\) và \(\left( {SBD} \right)\).
b) Trên mặt phẳng \(\left( {SBD} \right)\), gọi \(\left\{ Q \right\} = NI \cap SD\).
Do \(NI \subset \left( {MNP} \right)\), ta suy ra \(\left\{ Q \right\} = \left( {MNP} \right) \cap SD\).
Vậy \(Q\) là giao điểm của \(SD\) và \(\left( {MNP} \right)\).
CHƯƠNG III: NHÓM CACBON
Chương 9. Anđehit - Xeton - Axit Cacboxylic
SGK Ngữ Văn 11 - Cánh Diều tập 2
Chủ đề 4. Tổ chức cuộc sống gia đình và tài chính cá nhân
Đề minh họa số 2
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11