Bài 80 trang 92

Đề bài

Cho tam giác ABC có \(\widehat {ABC} + \widehat {ACB} = 2\widehat {BAC}\). Hai tia phân giác của góc B và góc C cắt nhau tại K. Trong các phát biểu sau, phát biểu nào sai?

a) Số đo góc KAC bằng 30°.

b) Số đo góc BAK bằng 25°.

c) Số đo góc BKC bằng 120°.

d) Số đo góc BKC bằng 115°.

Phương pháp giải - Xem chi tiết

Sử dụng tính chất tia phân giác của một góc để xác định các phát biểu đúng sai.

Lời giải chi tiết

 

• Xét ∆ABC có \(\widehat {ABC} + \widehat {ACB} + \widehat {BAC} = 180^\circ \) (tổng ba góc của một tam giác)

Mà \(\widehat {ABC} + \widehat {ACB} = 2\widehat {BAC}\) nên \(3\widehat {BAC} = 180^\circ \)

Suy ra \(\widehat {BAC} = \frac{{180^\circ }}{3} = 60^\circ \)

Xét tam giác ABC có hai tia phân giác của góc B và góc C cắt nhau tại K

Nên AK là tia phân giác của góc BAC.

Suy ra \(\widehat {KAB} = \widehat {KAC} = \frac{1}{2}\widehat {BAC} = \frac{{60^\circ }}{2} = 30^\circ \)

Do đó phát biểu a là đúng, phát biểu b là sai.

•Vì BK là tia phân giác của góc ABC nên \(\widehat {KBC} = \widehat {KBA} = \frac{1}{2}\widehat {ABC}\)

Vì CK là tia phân giác của góc ACB nên \(\widehat {KCB} = \widehat {KCA} = \frac{1}{2}\widehat {ACB}\)

Suy ra \(\widehat {KBC} + \widehat {KCB} = \frac{1}{2}\widehat {ABC} + \frac{1}{2}\widehat {ACB}\)

 Mà \(\widehat {ABC} + \widehat {ACB} = 2\widehat {BAC} = 2.60^\circ  = 120^\circ \)

 Do đó \(\widehat {KBC} + \widehat {KCB} = \frac{1}{2}\left( {\widehat {ABC} + \widehat {ACB}} \right) = \frac{{120^\circ }}{2} = 60^\circ \)

Xét ∆KBC có \(\widehat {KBC} + \widehat {KCB} + \widehat {CKB} = 180^\circ \) (tổng ba góc của một tam giác)

Nên \(\widehat {CKB} = 180^\circ  - \left( {\widehat {KBC} + \widehat {KCB}} \right) = 180^\circ  - 60^\circ  = 120^\circ \).

Do đó phát biểu c là đúng, phát biểu d là sai.

Vậy phát biểu sai là b và d.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved