Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
LG câu a
LG câu a
Chứng minh:
\( \displaystyle{x^2} + x\sqrt 3 + 1 = {\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4}\)
Phương pháp giải:
Sử dụng hằng đẳng thức \((a+b)^2=a^2+2ab+b^2\)
Lời giải chi tiết:
Ta có:
\( \displaystyle{x^2} + x\sqrt 3 + 1 = {x^2} + 2x{{\sqrt 3 } \over 2} + {3 \over 4} + {1 \over 4}\)
\( \displaystyle\eqalign{
& = {x^2} + 2x{{\sqrt 3 } \over 2} + {\left( {{{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4} \cr
& = {\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4} \cr} \)
Vế trái bằng vế phải nên đẳng thức được chứng minh.
LG câu b
LG câu b
Tìm giá trị nhỏ nhất của biểu thức: \({x^2} + x\sqrt 3 + 1\). Giá trị đó đạt được khi \(x\) bằng bao nhiêu?
Phương pháp giải:
- Thực hiện tách biểu thức đưa về dạng:
\({(a + b)^2 +m} \)
- Biện luận tìm giá trị nhỏ nhất:
\({(a + b)^2} \ge 0\)
\(\Rightarrow {(a + b)^2} + m \ge m\). Dấu "=" xảy ra khi \(a+b=0\).
Lời giải chi tiết:
Theo câu a) ta có:
\( \displaystyle{x^2} + x\sqrt 3 + 1 = {\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4}\)
Vì \( \displaystyle{\left( {x + {{\sqrt 3 } \over 2}} \right)^2} \ge 0\) với mọi \(x\) nên \( \displaystyle{\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4} \ge {1 \over 4}\)
Giá trị nhỏ nhất của biểu thức \( \displaystyle{\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4}\) bằng \( \displaystyle{1 \over 4}\) khi \( \displaystyle{\left( {x + {{\sqrt 3 } \over 2}} \right)^2} = 0\)
Suy ra \( \displaystyle x = - {{\sqrt 3 } \over 2}.\)
Bài 9: Làm việc có năng suất, chất lượng, hiệu quả
PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1
Bài 23. Vùng Bắc Trung Bộ
SOẠN VĂN 9 TẬP 1
PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 2