Đề bài
Chứng minh rằng các đường trung trực của tam giác vuông đi qua trung điểm của cạnh huyền.
Phương pháp giải - Xem chi tiết
Gọi d là đường trung trực của cạnh AB và M là giao điểm của d và BC.
Chứng minh M là trung điểm của BC
Lời giải chi tiết
Gọi d là đường trung trực của cạnh AB và M là giao điểm của d và BC.
Do M ∈ d nên MA = MB hay tam giác MAB cân tại M.
Suy ra \(\widehat {MBA} = \widehat {MAB}\) (1)
Trong tam giác vuông ABC có \(\widehat {ABC} + \widehat {ACB} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Nên \(\widehat {ACB} = 90^\circ - \widehat {ABC}\) (2)
Ta có \(\widehat {BAM} + \widehat {MAC} = \widehat {BAC} = 90^\circ \)
Nên \(\widehat {MAC} = 90^\circ - \widehat {MBA}\) (3)
Từ (1),(2) và (3) suy ra \(\widehat {MAC} = \widehat {MCA}\)
Do đó tam giác MAC cân tại M nên MA = MC.
Như vậy, MB = MC (= MA) nên M là trung điểm của BC.
Vậy các đường trung trực của tam giác vuông đi qua trung điểm của cạnh huyền.
Chương 9: Một số yếu tố xác suất
Unit 1. Cultural interests
Chương 1: Số hữu tỉ
Chủ đề 3: Thầy cô - người bạn đồng hành
Đề thi học kì 1
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7